a2 United States Patent

Sasaoka et al.

US009442724B2

10) Patent No.: US 9,442,724 B2
45) Date of Patent: Sep. 13, 2016

(54) START CONTROL APPARATUS FOR
CONTROLLING A START OF AN
INFORMATION DEVICE BY USING AN
INTERRUPT GENERATION CODE,
INFORMATION DEVICE, AND START
CONTROL METHOD

(71) Applicant: PANASONIC CORPORATION,
Osaka (JP)

(72) Inventors: Toshio Sasaoka, Nara (JP); Naoya
Ichinose, Tokyo (IP)

(73) Assignee: SOCIONEXT INC., Kanagawa (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 205 days.

(21) Appl. No.: 13/954,625

(22) Filed: Jul. 30, 2013

(65) Prior Publication Data
US 2013/0318331 A1~ Nov. 28, 2013

Related U.S. Application Data

(63) Continuation of application No. PCT/IP2011/007056,
filed on Dec. 16, 2011.

(30) Foreign Application Priority Data
Jan. 31, 2011 (IP) cceeveeeiecrccicnen 2011-018653

(51) Imt.CL

GO6F 9/30 (2006.01)

GO6F 9/48 (2006.01)

(Continued)

(52) US. CL

CPC ... GO6F 9/3005 (2013.01); GOGF 9/4401

(2013.01); GOGF 9/4812 (2013.01); GO6F
13/24 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,552,981 A * 9/1996 Yamada ... 700/3
6,070,220 A * 5/2000 Katayama 710/264

(Continued)

FOREIGN PATENT DOCUMENTS

Jp 2006-202252 A 8/2006
Jp 2008-065434 A 3/2008
(Continued)

OTHER PUBLICATIONS

International Search Report issued in International Patent Applica-
tion No. PCT/JP2011/007056 mailed on Feb. 28, 2012.

Primary Examiner — Reginald Bragdon

Assistant Examiner — Edward Wang

(74) Attorney, Agent, or Firm — McDermott Will & Emery
LLP

(57) ABSTRACT

A CPU includes a code write unit which writes an interrupt
generation code into a page in which the instructions stored
in the non-volatile memory are not written, among a plu-
rality of the pages included in an instruction area that is an
area of the volatile memory into which the instructions are
written, the interrupt generation code being a code for
generating a software interrupt, an instruction transfer unit
which transfers the instructions from the non-volatile
memory to a corresponding page of the volatile memory that
is a page in which the interrupt generation code generating
the software interrupt is stored when the software interrupt
is generated by the interrupt generation code, the instruc-
tions being to be stored in the corresponding page, and an
instruction execution unit which executes the instructions
stored in the instruction area, and when the interrupt gen-
eration code is executed, generates a software interrupt.

21 Claims, 52 Drawing Sheets

C Begin system start)

|

Transfer interrupt process Si01

’ program

}

‘ Transfer data

$102

J

Write software interrupt $103
instruction into volatile memory

!

5104
‘ ‘ Execute program ‘ I/

C End systemn start)

US 9,442,724 B2
Page 2

(51) Int. CL
GOGF 9/44
GOGF 13/24

(56)

(2006.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

7,395,397 B2

7,890,671 B2
2005/0005087 Al*
2006/0173925 Al
2008/0059662 Al

7/2008
2/2011
1/2005
8/2006
3/2008

Ogawa
Iwahashi et al.

Yang ..o

Ogawa
Iwahashi et al.

2009/0006669 Al*
2010/0262818 Al*
2010/0293342 Al*
2011/0022832 Al*
2012/0072658 Al

1/2009
10/2010
11/2010

1/2011

3/2012

Toyama et al. 710/35

Lee tovviniiiiiii 713/2
Morfey et al. 711/154
Motohama et al. 713/2

Hashimoto

FOREIGN PATENT DOCUMENTS

JP 2008-135051 A
JP 2010-231701 A
JP 2011-192139 A
712227 WO WO-2010/140403 Al

* cited by examiner

6/2008
10/2010
9/2011
12/2010

U.S. Patent Sep. 13,2016 Sheet 1 of 52 US 9,442,724 B2

FIG. 1
10
100
/
CPU
101
Code write unit ||
Instruction execution //102
unit
Instruction transfer 103
unit
Interrupt process //104
program transfer unit
//105
Data transfer unit
/
\’ /400
A \
v /200 \ -300
Volatile memory Non-volatile memory
Instruction | —1~ 202 Instruction //302
area area
203 | 303
Data area | | Data area |~ |

U.S. Patent

Sep. 13, 2016 Sheet 2 of 52

FIG. 2

C Begin system start)

\

Transfer interrupt process
program

| si01

\

Transfer data

5102

Y

Write software interrupt

instruction into volatile memory

5103

Y

Execute program

5104

Y

(End system start

)

US 9,442,724 B2

US 9,442,724 B2

Sheet 3 of 52

Sep. 13, 2016

U.S. Patent

€0

J

-

eyeq-

uoII2NIISUT <

OTTO0000T00000T0000
OOOTTOTOTOTOTTOTOOT
OOTTOO000TOTOTOOOTT
ITITOTOOTOOTTIOOTTIO

ds’‘te Aow Te ‘gE QNS
op ‘0 dwpd Zp 4P
008 dwl Adowaw j|ed

OP ‘TP ppe 0Op ‘T AoW
O%T B49 Qe ‘00T gns

(oe) ‘TR AOW e ‘gp Aow
008 dw Adowauw ||ed

0P ‘TP PPE 0P ‘T AOW

N
Z0¢ -~ AlOWaW 2]132]0OA-UON

peo

0TT0O0000T00000T0000
OOOTTOTOTOTOTTOTOOT
OOTTOOOOOTOTOTOOOTT
TTTTOTOOTOOTTIOOTTTIO

mom\

zoz

€ 'DI4

Adowdw 3|132|0A

U.S
. Patent

Se
p. 13,2016

Page

FIG. 4

S
heet 4 of
52

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
Di

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
Di

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

Di
Di

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
Di

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

202

S
9.44
U) 2,724
) B
2

U.S. Patent Sep. 13,2016 Sheet 5 of 52 US 9,442,724 B2

FIG. 5

Begin program
execution

—>

Y

Decode instruction

_interrupt
instruction?

5203 v 5204

Execute software
interrupt process

Execute instruction

U.S. Patent

Sep. 13, 2016

FIG,

Sheet 6 of 52

6

(Begin software interrupt process)

\

Transfer instruction of

corresponding page from non-volatile

memory to volatile memory

\

{

(End software interrupt process)

US 9,442,724 B2

S301

U.S
. Patent

Se
p. 13,2016

Page

S
heet 7 of
52

FIG. 7

202

~

Q;(I)IV 1, dO
ml
emcpy
jm
p 80
0

a
dd di, dO

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
Di

pi
Di

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
Di

pi
pi

pi
pi

pi
pi

pi
Di

US 7
9,44
,442,72
,724 B
2

U.S
. Patent

Se
p. 13,2016

Page

S
heet 8 of
52

FIG. 8

202

s

mov
1
, d0

call
mem
a
M
00
\

pi
pi

P
D

pi
p

Di
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
Di

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

Di
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi ¥

pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

pi
pi

Di
pi

pi
pi

pi
pi

pi
pi

pi

pi

4

US
9.44
) 2,724 B
b
2

U.S. Patent Sep. 13,2016 Sheet 9 of 52 US 9,442,724 B2

FIG. 9

202
Page ///
A mov 1, dO add d1, do
call memcpy jmp 800
pi pi pi pi pi pi pi pi
B | pi pi pi pi pi pi pi pi
pi pi pi pi pi pi pi pi
C | pi pi pi pi pi pi pipi
D clr d2 cmp 0, dO ¢
sub a0,al mov al, sp
pi pi pi pi pi pi pi pi
E pi pi pi pi pi pi pi pi
pi pi pi pi pi pi pi pi
F pi pi pi pi pi pi pi pi

U.S. Patent Sep. 13,2016 Sheet 10 of 52 US 9,442,724 B2

FIG. 10

CPU

| 101
Code write unit

Instruction execution //'102
unit
Instruction transfer /”/113
unit
Interrupt process //104
program transfer unit
//105
Data transfer unit
A
v /400
A y
Volatile memory Non-volatile memory
202 302
Instruction areaf | Instruction areal T
203 303
Data area | [Data area VF 1T
Transfer |1 204
management
table data

U.S. Patent Sep. 13,2016 Sheet 11 of 52 US 9,442,724 B2

FIG. 11

L 204

Page |Transfer management flag
A 1

mMim| OO
R~ O|O|+

U.S. Patent

Sep. 13, 2016

Sheet 12 of 52

FIG. 12

< Begin system start

)

\

Transfer interrupt process | — 5101
program
Y ‘
5102
Transfer data
Y S105
Initialize transfer management |~
table data
/
Write software interrupt 5103
instruction into volatile memory
y
5104
Execute program
Y
(End system start)

US 9,442,724 B2

U.S. Patent

Sep. 13, 2016 Sheet 13 of 52

FIG. 13

204
Page Transfer management flag
A 0
B 0
C 0
D 0
E 0
F 0

US 9,442,724 B2

U.S. Patent Sep. 13,2016 Sheet 14 of 52 US 9,442,724 B2

FIG. 14

CBegin software interrupt process)

S302

Not transferred?

YES

Transfer instruction of 5301

corresponding page from non-volatile ~
memory to volatile memory

Y $303
Update transfer management table |—
data

Y

C End software interrupt process)

U.S. Patent

Sep. 13, 2016 Sheet 15 of 52

FIG. 15
L 204
Page | Transfer management flag
A 1
B 0
C 0
D 0
E 0
F 0
FIG. 16
— 204
Page | Transfer management flag
A 1
B 0
C 0
D 1
E 0
F 0

US 9,442,724 B2

US 9,442,724 B2

Sheet 16 of 52

Sep. 13, 2016

U.S. Patent

ol BRI H P H|H]20]09]00[00]08|00|T0|EE
id fid|idjid}d|id ce ‘Jyxoqns 0P ‘0000080 Aow
uoloNJIIsul Adepunoq abed _
TO|00 | I8|€E| TO| 4P| $9{00|00120]/09|00|00|08|00|T0|¢€EE
0op ‘T Aow Ip 42 op ‘ooT:ans OP ‘000008X0 Aow
Atepunogq sbed
g obed v abed

LT "OId

(a)

(e)

U.S. Patent Sep. 13,2016 Sheet 17 of 52 US 9,442,724 B2

FIG. 18
30
/120 /
CPU
| 101
Code write unit d
/_/102
Instruction execution unit
//114
Instruction transfer unit
| 115
Transfer unit -
| 116
First code write unit }]
| 117
Second code write unit}y |
Interrupt process program /’/104
transfer unit
//105
Data transfer unit
400
1 .
A A
v /220 , /310
Volatile memory Non-volatile memory
Instruction | —1 202 Insgruction L — 302
are
area 203 303
Data area | | Data area |~ |
Transfer Boundary
management | 205 instruction | 304
table data address data

US 9,442,724 B2

Sheet 18 of 52

Sep. 13, 2016

U.S. Patent

- 0 0 4
- 0 0 3
24€0X0 T 0 d
PIZ0X0 T 0 9
2410X0 T 0 g
- 0 0 A
be|} aouasqe
>s9/ppe _ocmucmmmma Bey
9p02 peaH | uoioNJIsul LOIBMASUI Juswsbeuew abeqd
Alepunog bumncwou ldasuel|
S0¢
6T 'OId

US 9,442,724 B2

Sheet 19 of 52

Sep. 13, 2016

U.S. Patent

1243

- 0 d

- 0 3

2JE0X0 T d

pPJZ0X0 T 2

2JT0X0 T 4

- 0 Y
. bely aouasqge
PP 10 2ouasaud

UoIIoNJIS Ul ueHDISL abeqd
Alepunogq >Lmuc:on
0¢ 'OId

U.S. Patent

Sep. 13, 2016 Sheet 20 of 52

FIG. 21

C Begin system start)

\

Transfer interrupt process
program

__s101

Y

Transfer data

5102

Initialize transfer management
table data

5105

Transfer boundary instruction
address data

5106

Y

Write software interrupt
instruction into volatile memory

5103

/

Execute program

5104

Y

(End system start)

US 9,442,724 B2

U.S. Patent Sep. 13,2016 Sheet 21 of 52 US 9,442,724 B2

FIG. 22

@egin software interrupt process)

5302

NO

Not transferred?

S304 S305
r~ Y r~
Determine page immediately
after corresponding page as
page to be transferred

|

Determine corresponding
page as page to be transferred

A
Perform instruction
transfer process on
page to be transferred

5306
L~

Y
(End software interrupt process)

US 9,442,724 B2

Sheet 22 of 52

Sep. 13, 2016

U.S. Patent

—H_\mom:
B {44844 4|pr /20| 4 |00j00j08]00|T0|€EE 9] 00[00{20]0q
d [1d[1d|1d|1d | 1d|(zp ‘wuwrxa ppe)| 1d | 0P ‘000008X0 Mow | [op‘ootans |
! T
m 3 | cost | 708T
' \\ '
a8 |s|#s]s]4] 8|p1|c0] 4]oojoo]os oolT0/€E +9/00/00{20| 4
id [1d [1d [id | 1d [1d | (zp ‘wupTx0 ppe)| 1d | 0P ‘000008%0 Aow | T [(op 00T gns)[id| T
_ N _
i
: — !
#lu|s|s| 48|84 #|v1|coler|oojoo]os oolTo/cE +9]00]00{20| 4
d |1d [|1d [d [1d | zP W¥Tx0 PPe | 0P '000008x0 Aow | T [(op ‘oot gns)lid|
m < !
; c08l T08T m
' \ '
Bla s sy s|ssss s {u|y|e{ey] |H]8[80[8]
id [id|idjidjid|idfid{idfd|id]idfid]id]id]id|id|id (€e ‘uixpigns) 1d
Q obed \Cmu_c:og 2 °bed % Emva:on_ 8 90ed
abey abed
€¢ 'Oid

(p)

(®)

(@)

(e)

US 9,442,724 B2

Sheet 23 of 52

Sep. 13, 2016

U.S. Patent

[ep| €081
~

B4 | #|H|H|H]|H]|H]H][20]H]|00/00/0£]00]TOEE| |0F €0 PT No_mu
id [1d |1d | 1d f1d [1d J(ge "yyxo gns)| 1d | OP ‘00000/X0 Aowl ZP '0vE0PTX0 PPe

: ! /

- [#] zoer . cost
U4 | H|#|#[H]|H]|H]H][20]4]|00/00]0£]00|TOEE| |0F|E0PT|CO|H |
id id [id [id | id | d [(se ‘gyxo gns) | 1d [op ‘00000£x0 Aow (zp ‘ovE0pTX0 pPR) | 1d

. __-T06T m

- [09] zoet m
33|34 H|H|H|H][H][20]0d|00/00]0L|00[TOEEl |0¥|E€0{PTIZO | H |
id(id|idfidjid|id]| €e’ggxoqns | 0P ‘00000/X0 Aowl (zp ‘ove0pTX0 PPE) | 1l

7 m

m TO6T m €087

1 i \
B H 8| S8 [S H][S|H[#[H|H[H][H] [H#]H|PT]20 t
id(id|didjid{ididfid[idfdjd|id|idfid}id]|id]id (zp ttié%mv

3 obeq " obeqd % 1 abed
Alepunog NowH \Cmnc:og
abed abed
v¢ "Ol4

(P)

)

(q)

()

U.S. Patent Sep. 13,2016 Sheet 24 of 52 US 9,442,724 B2

FIG. 25

Perform instruction transfer process on
page to be transferred

y
Transfer instruction of corresponding | S401
page from non-volatile memory to |

volatile memory

5402
/
Update transfer management table data
5403
Page NO

boundary instruction exists?

S404

Instruction
of following page is not transferred?

NO

S405
Save code of start address of page |—

boundary instruction to buffer

Y

Write software interrupt instruction | S406
into start address of page boundary |~
instruction

5407

YES

Instruction
of previous page is already
transferred?

Restore code of start address of page | >~
boundary instruction of previous page
from buffer

Y
Perform instruction transfer process
on page to be transferred

US 9,442,724 B2

Sheet 25 of 52

Sep. 13, 2016

U.S. Patent

- 0 0 4
- 0 0 =
24€0X0 T 0 d
pPi¢0Xx0 T 0 D
09 24T0X0 T T d
- 0 0 v
b
Bp0d peaH | uoRdNJIISUl LONINASU| Juswiabeuew abed
Adepunog Alepunog lojsueld)
S0¢
9¢ 'Ol

US 9,442,724 B2

Sheet 26 of 52

Sep. 13, 2016

U.S. Patent

S0z~

- 0 0 4
- 0 0 =
24€0X0 T 0 d
ep PJC0X0 T T D
0q 2JT0X0 T T d
- 0 0 v
ssauppe | DR82OL0KE bey
2P0 praH c\mg_u%Eww:_ LONoN.ASUI pcwEwmmmcch abed
punog Alepunog 4SUBIL
=
LC 'Ol

US 9,442,724 B2

Sheet 27 of 52

Sep. 13, 2016

U.S. Patent

S0¢

- 0 0 E
- 0 0 3
09 24£0X0 T I d
ep P420X0 T T 2
09 2410X0 T T d
- 0 0 v
sso.ppe bely souasqge Bey
9p0d pPeSH | uoIdNLISUI Lﬂ%_w,u_wwﬂcg_ juswabeuew | @bed
Alepunog \C.muc:om. Jajsued)
8¢ 'OlI4

U.S. Patent Sep. 13,2016 Sheet 28 of 52 US 9,442,724 B2

FIG. 29

C Begin process of idle state)

Y S501
Detect non-transferred page o

‘l‘ 5502

Non-transferred NO
page exists?
YES
A S503
Transfer instruction of =

corresponding page from
non-volatile memory to
volatile memory

Y 5504
Update transfer management |~

table data

v
(End process of idle state)

U.S. Patent Sep. 13,2016 Sheet 29 of 52 US 9,442,724 B2

FIG. 30

202
Page /
A mov 1, dO add d1, d0
call memcpy jmp 800
pi pi pi pi pi pi pi pi
B | pi pi pi pi pi pi pi pi
pi pi pi pi pi pi pi pi
C pi pi pi pi pi pi pi pi
D clr d2 cmp 0, dO
sub a0,al mov al, sp
pi pi pi pi pi pi pi pi
E | i pi pi pi pi pi pipi
pi pi pi pi pi pi pi pi
P | bi pi pi pi pi pi pi pi

U.S. Patent

Sep. 13, 2016 Sheet 30 of 52

FIG. 31

204

Page

Transfer management flag

1

Mmoo w

o|lOoO(H]|O|0O

US 9,442,724 B2

U.S. Patent

Sep. 13, 2016 Sheet 31 of 52

Page

FIG. 32

202

S

mov 1, dO add d1, dO
call memcpy jmp 800

mov d0, al mov al, (a0)
call 100, a0 bra 140

pi pi pi pi pi pl pi pi
pi pi pi pi pi pi pi pi

clr d2 cmp 0, dO
sub a0,al mov al, sp

pi pi pi pi pi pi pi pi
pi pi pi pi pi pi pi pi

pi pi pi pi pi pi pi pi
pi pi pi pi pi pi pi pi

US 9,442,724 B2

U.S. Patent

Sep. 13, 2016 Sheet 32 of 52

FIG. 33
204
Page Transfer management flag
A 1
B 1
C 0
D 1
E 0
F 0

US 9,442,724 B2

U.S. Patent Sep. 13,2016 Sheet 33 of 52 US 9,442,724 B2

FIG. 34

202
Page ‘/
A mov 1, dO add d1, dO
call memcpy jmp 800
B mov d0, al mov al, (a0)
call 100, a0 bra 140
C mov 1, dO add di1, dO
call memcpy jmp 800
D clrd2 cmp 0, dO
sub a0,al mov al, sp
pi pi pi pi pi pi pi pi
= | pi pi pi pi pi pi pi pi
pi pi pi pi pi pi pi pi
" | pi pi pi pi pi pi pi pi

U.S. Patent

Sep. 13, 2016 Sheet 34 of 52

FIG. 35

///204

Page

Transfer management flag

mMImolO|®

olo|rlir|H|H

US 9,442,724 B2

U.S. Patent Sep. 13,2016 Sheet 35 of 52 US 9,442,724 B2

FIG. 36
40
130
/
CPU
101
Code write unit [
Instruction execution 102
unit
Instruction transfer 118
unit
Interrupt process /’/104
program transfer unit
{105
Data transfer unit
A
\ /400
A A
\ /230 v /320
Volatile memory Non-volatile memory
Instruction | —1~ 202 Instruction | —1~ 302
area 203 area 303
Dataarea } | Data area | |
Transfer 1206 Transfer 1 -305
management sequence
table data data

U.S. Patent

Sep. 13, 2016 Sheet 36 of 52
FIG. 37
//
Transfer
Page Hwaagnagement gg%rcf’efﬁge
A 1 1
B 0 4
C 0 5
D 1 2
E 1 3
F 0 6

US 9,442,724 B2

206

U.S. Patent

Sep. 13, 2016 Sheet 37 of 52
FIG. 38

202

Page ’/
A (r:gcl)lvn‘%énq\gpy Janci(; %%)’(Jdo\ @
5 | 100,50 bra 140 711 \@
C |G memepy mp g0 Y@
> | Semer mi ke’ \2
£ | nmemepy oo 8008 ¥| /@
F | Gi10020 baia0 4 ®©

US 9,442,724 B2

U.S. Patent Sep. 13,2016 Sheet 38 of 52 US 9,442,724 B2

FIG. 39
///305
Transfer
Page

sequence

A 1

B 4

C 5

D 2

E 3

F 6

U.S. Patent Sep. 13,2016 Sheet 39 of 52 US 9,442,724 B2

FIG. 40

< Begin system start)

Y

Transfer interrupt 5101
process program

Y

S102
Transfer data o

Initialize transfer management 5105
table data

Y
Write software interrupt 5103
instruction into volatile
memory

Y S107
System
start forysecond time NO
or later?

YES

5108
Transfer transfer sequence data -

2

5104
Execute program

5109
System
start for first time?

YES

Write transfer sequence data | -5110
into non-volatile memory

<

C End system start)

U.S. Patent

Sep. 13, 2016

Sheet 40 of 52

FIG. 41
//
Transfer Transfer
Page
management flag |sequence
A 0 1
B 0 4
C 0 5
D 0 2
E 0 3
F 0 6

US 9,442,724 B2

206

U.S. Patent Sep. 13,2016 Sheet 41 of 52 US 9,442,724 B2

FIG. 42

CBegin software interrupt process)

S302

NO
Not transferred?

YES
Y
1

Transfer instruction of corresponding /530
page from non-volatile memory to
volatile memory

Update transfer management //5307

table data

(transfer sequence record)

<
N

Y
(End software interrupt process)

U.S. Patent Sep. 13,2016 Sheet 42 of 52 US 9,442,724 B2

FIG. 43

(Begin process of idle state)

Y $505
Detect non-transferred page with |}

first transfer sequence

l S502

Non-transferred
page exists?

Transfer instruction of corresponding 5303

: L~
page from non-volatile memory to
volatile memory

y

S504
Update transfer management
table data

-
«<

Y
C End process of idle state)

U.S. Patent Sep. 13,2016 Sheet 43 of 52 US 9,442,724 B2

FIG. 44

202
Page ‘/
A mov 1, d0 add d1, do
call memcpy jmp 800
pi pi pi pi pi pi pi pi
B 1pi pi pi pi pi pi pi pi
pi pi pi pi pi pi pi pi
C pi pi pi pi pi pi pi pi
D clr d2 cmp 0, dO
sub a0,al mov al, sp
E mov 1, dO add di, do
call memcpy jmp 800
pi pi pi pi pi pi pi pi
F pi pi pi pi pi pi pi pi

U.S. Patent Sep. 13,2016 Sheet 44 of 52 US 9,442,724 B2

FIG. 45
C Begin system start D

| Transfer interrupt process program }— 5101

| Transfer data ‘//5102

| Initialize transfer management table data]— S105

v

Write software interrupt instruction |— 5103
into volatile memory

S107

System start NO
for second time or later?
YES
| Transfer transfer sequence data]// S108

Y

~Loop A: Repeat following predetermined ™
number of times

Detect non-transferred page | —S111
with first transfer sequence

S112
Non-transferred page exists?

TES S113
Transfer instruction of correspondingl—"

page from non-volatile memory to
volatile memory

5114

¥
|Update transfer management table datal™
| ed

2
k Loop A)
| | Execute program | },./5104
—-5109

System start for first time?
YES

Write transfer sequence data into | ~S110
non-volatile memory

NO

O

Y
C End system start)

U.S. Patent Sep. 13,2016 Sheet 45 of 52 US 9,442,724 B2

FIG. 46
50
14
~ 0
CPU
101
Code write unit]
Instruction execution //102
unit
Instruction transfer 119
unit
Interrupt process /'/104
program transfer unit
| 105
Data transfer unit |
A
\ /400
A
, /240 /330
Volatile memory Non-volatile memory
Instruction | —1~ 202 Instruction /'/302
area area
203 303
Data area | | Data area |~ |
Transfer 1207 Interrupt {306
management prohibition state
table data data

U.S. Patent Sep. 13,2016 Sheet 46 of 52 US 9,442,724 B2

FIG. 47
L 207
Transfer Interrupt
Page management prohibition
flag state

mimMmIoO[®@| >
o|lo|lolr|—m|O
[N Ne N Nes N BN NN N

U.S. Patent

Page

Sep. 13, 2016 Sheet 47 of 52
FIG. 48
‘/202

mov 1, dO add di, dO PSW.IM = 7
call memcpy jmp 800

mov d0, al mov al, (a0) _
call 100, a0 bra 140 PSW.IM =0
mov 1, d0 add di, dO _
call memcpy jmp 800 PSW.IM = 2
clr d2 cmp 0, dO _
sub a0,al mov ail, sp PSW.IM =7
mov 1, d0 _add di, do PSW.IM = 7
call memcpy jmp 800

mov d0, a1l mov al, (a0) -
call 100, a0 bra 140 PSW.IM = 7

US 9,442,724 B2

U.S. Patent

Sep. 13, 2016 Sheet 48 of 52

FI1G. 49

L 306

Page Interrupt prohibition state
A 0
B 1
C 1
D 0
E 0
F 0

US 9,442,724 B2

U.S. Patent Sep. 13,2016 Sheet 49 of 52 US 9,442,724 B2

FIG. 50

C Begin system start)

Transfer interrupt process program |— S101

v

Transfer data

v

Initialize transfer management S105
table data g o
Y

Write software interrupt instruction /5103
into volatile memory

S107
System -l NO
start for second time or later?

Transfer interrupt prohibition flag data

/_/5102

Y

S116
- Non-transferred <
interrupt prohibition page exists?

V YES

Transfer instruction of interrupt | —
prohibition page from non-volatile
memory to volatile memory

v S118
Update transfer management table data |

S117

\l/ S104
Execute program —

S8
VYES

Write interrupt prohibition flag data | 5119
into non-volatile memory

<

Y
C End system start)

U.S. Patent Sep. 13,2016 Sheet 50 of 52 US 9,442,724 B2

FIG. 51

L 207

InterruPt
prohibition state

Transfer
Page management
flag

mMmimo|lO|m|>
ool ol ol Roll N
[l Ne N NN NN N Ne]

U.S. Patent Sep. 13,2016 Sheet 51 of 52 US 9,442,724 B2

FIG. 52

202

v~

Page
A pi pi pi pi pi pi pi pi
pi pi pi pi pi pi pi pi
mov d0, al mov al, (a0)
call 100, a0 bra 140
mov 1, d0 add di, dO
call memcpy jmp 800
pi pi pi pi pi pi pi pi
D pi pi pi pi pi pi pi pi
pi pi pi pi pi pi pi pi
pi pi pi pi pi pi pi pi
pi pi pi pi pi pi pi pi
pi pi pi pi pi pi pi pi

U.S. Patent

Sep. 13, 2016 Sheet 52 of 52

FIG. 53

(Begin software interrupt process)

\ 5302

N
@W

YES

\
Transfer instruction of corresponding 5301

page from non-volatile memory to
volatile memory

S308
Update transfer management table datal—

(interrupt prohibition flag record)

-
T~

\
(End software interrupt process)

US 9,442,724 B2

US 9,442,724 B2

1
START CONTROL APPARATUS FOR
CONTROLLING A START OF AN
INFORMATION DEVICE BY USING AN
INTERRUPT GENERATION CODE,
INFORMATION DEVICE, AND START
CONTROL METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

This is a continuation application of PCT International
Application No. PCT/JP2011/007056 filed on Dec. 16,2011,
designating the United States of America, which is based on
and claims priority of Japanese Patent Application No.
2011-018653 filed on Jan. 31, 2011. The entire disclosures
of the above-identified applications, including the specifi-
cations, drawings and claims are incorporated herein by
reference in their entirety.

FIELD

The present disclosure relates to a start control apparatus
or the like which controls an information device including a
non-volatile memory which stores instructions and a volatile
memory that is accessible faster than the non-volatile
memory.

BACKGROUND

Conventionally, apparatuses for reducing the time from
power activation to system start have been proposed.

For example, a quick starting apparatus disclosed in
Patent Literature 1, at the first system boot, monitors access
to a main storage apparatus from a cache memory, obtains
access time from power activation to an access operation
and an address of the main storage to be accessed, and
generates the obtained access time and address as table data.
The quick starting apparatus, at the second and subsequent
system boot, reads data from an address of the main storage
corresponding to a relevant address of the table data accord-
ing to a sequence of the access time included in the table
data, and writes the read data into the cache memory. In
other words, when an initialization program is executed for
the second time or later, the quick starting apparatus, by
referring to the access time included in the table data
generated in the previous execution, sequentially reads data
from the address of the main storage corresponding to the
address included in the table data and writes the data into the
cache memory. Therefore, access from the CPU to the main
storage does not occur, the execution of the initialization
program is faster, and the start time of the system can be
reduced.

Moreover, in a program start control device disclosed in
Patent Literature 2, a DMA control unit reads a system start
program from a flash memory, and directly transfers the read
system start program to an external memory. Moreover,
when the transfer of the system start program is completed
by the DMA control unit, the CPU performs system start
according to the system start program read from the external
memory. Meanwhile, simultaneously in parallel to the sys-
tem start, the DMA control unit reads the system control
program from the flash memory, and transfers the read
system control program to the external memory. As
described above, since the system start operation and the
program read operation are performed simultaneously in
parallel, it is possible to reduce the start time of the system.

10

15

20

25

30

35

40

45

50

55

60

65

2
CITATION LIST

Patent Literature

[PTL1] Japanese Unexamined Patent Application Publica-
tion No. 2010-231701

[PTL2] Japanese Unexamined Patent Application Publica-
tion No. 2008-65434

[PTL3] Japanese Unexamined Patent Application Publica-
tion No. 2008-135051

SUMMARY
Technical Problem

However, in the quick starting apparatus disclosed in
Patent Literature 1, control is performed for quickening the
system start based on the table data generated at the previous
system start. Therefore, there is a problem that it is impos-
sible to quicken the start when the system makes the first
start. Moreover, in the case where access is performed in an
access sequence different from the sequence of access, at the
time of the previous system start, from the cache memory to
the main storage even when the second or subsequent
system start is made, there is a problem that a cache miss
occurs and it is impossible to quicken the start.

Moreover, in the program start control apparatus dis-
closed in Patent Literature 2, the system start program is
executed by prioritizing the transfer of the system start
program to the external memory over the transfer of the
system control program to the external memory, with the
result that the system start is quickening. For the quickening,
the system start program and the system control program
need to be segmented in advance. However, there is a
problem that the segmentation of the program is difficult in
a large-scale system.

In an electronic device, a data processing method, and a
computer program disclosed in Patent Literature 3, when an
access is detected to an area on which data copy is not
performed, data copy is performed through an NMI interrupt
handler process. However, there is a problem that it is
impossible to detect the access if a memory protection unit
such as Memory Management Unit is not implemented as
hardware.

The present disclosure is conceived in order to solve the
above mentioned problems, and an object of the disclosure
is to provide a start control apparatus or the like which does
not have to segment a program according to a program type
and is capable of quicken the system start from when the
system makes the first start.

Solution to Problem

In order to achieve the above mentioned goal, a start
control apparatus according to an aspect of the present
disclosure is a start control apparatus for controlling a start
of an information device which includes a non-volatile
memory storing a plurality of instructions and a volatile
memory that is accessible faster than the non-volatile
memory, the start control apparatus comprising: a code write
unit configured to write an interrupt generation code into a
page in which the instructions stored in the non-volatile
memory are not written, among a plurality of the pages
included in an instruction area that is an area of the volatile
memory into which the instructions are written, the interrupt
generation code being a code for generating a software
interrupt; an instruction transfer unit configured to transfer

US 9,442,724 B2

3

the instructions from the non-volatile memory to a corre-
sponding page of the volatile memory that is a page in which
the interrupt generation code generating the software inter-
rupt is stored when the software interrupt is generated by the
interrupt generation code, the instructions being to be stored
in the corresponding page; and an instruction execution unit
configured to execute the instructions stored in the instruc-
tion area, and when the interrupt generation code is
executed, generate a software interrupt.

With this configuration, the code write unit writes an
interrupt generation code into a page into which the instruc-
tion is not written, among pages that are included in the
instruction area. Therefore, when the instruction is stored in
the instruction area, the instruction is executed. When the
instruction is not stored in the instruction area, a software
interrupt occurs due to the execution of the code. In the
software interrupt process, the instruction is transferred to
the corresponding page. Therefore, after the interrupt pro-
cess, the instruction can be executed normally. As described
above, the instruction execution and the instruction transfer
can be performed simultaneously in parallel. Therefore, the
program does not have to be segmented according to a
program type, and it is possible to quicken the system start
from when the system makes the first start. It is to be noted
that the system is an information device.

Favorably, the volatile memory further stores transfer
management table data showing a page which is included in
the instruction area and in which the instructions have
already been transferred from the non-volatile memory to
the volatile memory, and the instruction transfer unit, when
it is able to determine that the instructions are not transferred
to the corresponding page by referring to the transfer man-
agement table data when the software interrupt is generated,
is configured to: transfer the instructions to be stored in the
corresponding page from the non-volatile memory to the
corresponding page of the volatile page; and update the
transfer management table data.

With this configuration, it can be determined whether or
not the instruction is transferred, by referring to the transfer
management table data. For example, there is a case where
an interrupt generation code is embedded in the program for
a purpose different from that for designating a breakpoint in
debugging. In this case, although it is not necessary to
transfer the instruction by executing the code in the break-
point, the instruction is transferred when there is no means
for determining whether or not the instruction is transferred.
In this case, it can be appropriately determined whether or
not the instruction is to be transferred, by referring to the
transfer management table data.

Moreover, the instruction transfer unit may be configured
to (1) transfer, from the non-volatile page to the correspond-
ing page of the volatile memory, the instructions to be stored
in the corresponding page when a software interrupt is
generated by the interrupt generation code located in a page
to which the instructions are not transferred, and write the
interrupt generation code into an instruction located across
a boundary between the corresponding page and a page
located immediately after the corresponding page, when the
instructions are not transferred to the page located immedi-
ately after the corresponding page, and (ii) transfer the
instructions to be stored in a page immediately after the
located instruction, from the non-volatile memory to the
page of the volatile memory which is immediately after the
located instruction, when the software interrupt is generated
by the interrupt generation code written into the located
instruction.

10

15

20

25

30

35

40

45

50

55

60

65

4

Specifically, the volatile memory further stores transfer
management table data showing (i) a page which is included
in the instruction area and in which the instructions have
already been transferred from the non-volatile memory to
the volatile memory, and (ii) an address, in the volatile
memory, of a page boundary instruction that is an instruction
located across a boundary between two pages, and the
instruction transfer unit includes: a transfer unit configured
to (i) determine the corresponding page as a page to be
transferred when it is able to be determined that the instruc-
tions are not transferred to the corresponding page by
referring to the transfer management table data when the
software interrupt is generated, (ii) determine the page
located immediately after the corresponding page as a page
to be transferred when it is able to determine that the
instructions have already been transferred to the correspond-
ing page by referring to the transfer management table data
when the software interrupt is generated, and (iii) transfer
the instructions to be stored in the corresponding page
determined as the page to be transferred or the page located
immediately after the corresponding page, from the non-
volatile memory to the page to be transferred of the volatile
memory, and update the transfer management table data; a
first code write unit configured to write an interrupt genera-
tion code into an address of a page boundary instruction of
the page to be transferred when it is able to determine that
the address of the page boundary instruction is included in
an address of the page to be transferred and the instructions
are not transferred to a following page, by referring to the
transfer management table data after a process by the
transfer unit, the following page being a page located
immediately after the page to be transferred; and a second
code write unit configured to write a page boundary instruc-
tion into an address of the page boundary instruction of a
previous page when it is able to determine that the address
of the page boundary instruction is included in an address of
the previous page and the instructions have already been
transferred to the previous page, by referring to the transfer
management table data after the process by the transfer unit,
the previous page being a page located immediately before
the page to be transferred.

When the instruction is not transferred to the adjacent
page in the case where the instruction is transferred to the
page to be transferred, the page boundary instruction located
across between the page to be transferred and the neighbor-
ing page is an instruction different from that of the original
page boundary. Therefore, it is possible to prevent the
execution of an erroneous page boundary instruction by
storing an interrupt generation code in the address of the
page boundary instruction.

Moreover, when the instruction execution unit is in an idle
state, the instruction transfer unit may be further configured
to transfer instructions to be stored in a page to which the
instructions are not transferred, from the non-volatile
memory to a page of the volatile memory to which the
instructions are not transferred.

Specifically, the volatile memory further stores transfer
management table data showing a page which is included in
the instruction area and in which the instructions have
already been transferred from the non-volatile memory to
the volatile memory, and the instruction transfer unit is
further configured to detect a page to which the instructions
are not transferred, by referring to the transfer management
table data when the instruction execution unit is in an idle
state, transfer the instructions to be stored in the detected

US 9,442,724 B2

5

page from the non-volatile memory to the detected page of
the volatile memory, and update the transfer management
table data.

By transferring the instruction in advance when the
instruction execution unit is in an idle state, the number of
software interrupts can be reduced. Therefore, the system
start can be quickened.

Moreover, the volatile memory further stores transfer
management table data showing (i) a page which is included
in the instruction area and in which the instructions have
already been transferred from the non-volatile memory to
the volatile memory, and (ii) a transfer sequence of instruc-
tions on a page-by-page basis from the non-volatile memory
to the volatile memory, and the instruction transfer unit, by
referring to the transfer management table data, when the
instruction execution unit is in an idle state or before the
instructions are executed, may be configured to (i) transfer
the instructions to be stored in a page to which the instruc-
tions are not transferred, from the non-volatile memory to a
page of the volatile memory to which the instructions are not
transferred, according to a transfer sequence indicated by the
transfer management table data, and (ii) update the transfer
management table data.

By transferring the instruction according to the sequence
of transfer from the non-volatile memory to the volatile
memory, a transfer of the instruction in advance can be
performed effectively in the program in which the instruc-
tion execution sequence is determined to some extent. In
other words, the number of software interrupts caused by the
execution of another interrupt generation code instead of the
transferred instruction in advance can be reduced, and the
advanced transtferred instruction is executed at an early stage
after the transfer of the instruction, with the result that the
system start can be quickened.

Moreover, the volatile memory further stores transfer
management table data showing (i) a page which is included
in the instruction area and in which the instructions have
already been transferred from the non-volatile memory to
the volatile memory, and (ii) an interrupt prohibition state
indicating, on a page-by-page basis, whether or not an
interrupt is prohibited when the instructions are transferred
from the non-volatile memory to the volatile memory, and
the instruction transfer unit, by referring to the transfer
management table data before instructions to be stored in an
interrupt prohibition page are executed, may be configured
to (i) transfer the instructions to be stored in the interrupt
prohibition page from the non-volatile memory to the inter-
rupt prohibition page of the volatile memory, and (ii) update
the transfer management table data, the interrupt prohibition
page being a page in which an interrupt is prohibited when
the instructions are transferred.

By transferring the instruction stored in the interrupt
prohibition page before the instruction is executed, it is
possible to prevent degradation in responsiveness caused by
the original period of the interrupt prohibition period, the
software interrupt process, an amount of transfer process
performed in the software interrupt process when the soft-
ware interrupt occurs due to the execution of the interrupt
generation code. Therefore, it is possible to quicken the
system start without degrading the system interrupt respon-
siveness.

Moreover, the above described start control apparatus
may include an interrupt process program transfer unit
configured to write a program of a process performed by the
instruction transfer unit into the volatile memory, before the
process is started by the instruction transfer unit.

20

30

35

40

45

55

6

Moreover, the interrupt generation code may be a soft-
ware interrupt instruction included in an instruction set
implemented in the instruction execution unit.

Moreover, the interrupt generation code may be an unde-
fined code which causes exception handling and is not
included in an instruction set implemented in the instruction
execution unit.

The transfer process of the instruction can be treated as
exception handling.

Moreover, the above described start control apparatus
may include a data transfer unit configured to transfer
constant data stored in the non-volatile memory to the
volatile memory, before the instructions are executed by the
instruction execution unit.

An information device according to another aspect of the
present disclosure includes: a non-volatile memory storing a
plurality of instructions; a volatile memory accessible faster
than the non-volatile memory; and the above described start
control apparatus.

With this configuration, the code write unit writes an
interrupt generation code into a page in which the instruction
is not written among pages that are included in the instruc-
tion area. Therefore, when the instruction is stored in the
instruction area, the instruction is executed. When the
instruction is not stored in the instruction area, a software
interrupt occurs due to the execution of the code. In the
software interrupt process, the instruction is transferred to
the corresponding page. Therefore, after the interrupt pro-
cess, the instruction can be executed normally. As described
above, since the instruction execution and the instruction
transfer can be performed in parallel, they can be performed
simultaneously in parallel. Therefore, the program does not
have to be segmented according to a program type, and it is
possible to quicken the system start from when the system
makes the first start. It is to be noted that the system is an
information device. The information device may be an
apparatus which transfers the instructions stored in a non-
volatile memory to a volatile memory and then executes the
instructions, such as a digital still camera, a digital televi-
sion, a mobile phone, a personal digital assistant (PDA), and
the like.

It is to be noted that the present disclosure can be
implemented not only as a transfer control apparatus includ-
ing these characteristic processing units but also as a transfer
control method in which the processes performed by the
characteristic processing units included in the transfer con-
trol apparatus are determined as steps. Moreover, the present
disclosure can also be implemented as a program for causing
a computer to function as the characteristic processing units
included in the transfer control apparatus, or a program for
causing the computer to perform the characteristic steps
included in the transfer control method. It goes without
saying that the program can be distributed via a non-
transitory computer-readable storage medium such as CD-
ROM and a communication network such as the Internet.

Advantageous Effects

In the present disclosure, the program does not have to be
segmented according to a program type, and it is possible to
quicken the system start from when the system makes the
first start.

BRIEF DESCRIPTION OF DRAWINGS

These and other objects, advantages and features of the
disclosure will become apparent from the following descrip-

US 9,442,724 B2

7

tion thereof taken in conjunction with the accompanying
drawings that illustrate a specific embodiment of the present
disclosure.

FIG. 1 is a block diagram showing a functional configu-
ration of an information device according to Embodiment 1
of the present disclosure.

FIG. 2 is a flowchart of a process performed when the
information device starts.

FIG. 3 is a diagram for explaining a data transfer process
performed by the data transfer unit.

FIG. 4 is a diagram for explaining a write process of
software interrupt instruction performed by the code write
unit.

FIG. 5 is a detailed flowchart of a program execution
process (S104 in FIG. 2).

FIG. 6 is a detailed flowchart of a software interrupt
process (S203 in FIG. 5).

FIG. 7 is a diagram showing an example of instructions
stored in the instruction area.

FIG. 8 is a diagram showing an example of instructions
stored in the instruction area.

FIG. 9 is a diagram showing an example of instructions
stored in the instruction area.

FIG. 10 is a block diagram showing a functional configu-
ration of an information device according to Embodiment 2
of the present disclosure.

FIG. 11 is a diagram showing an example of the transfer
management table data.

FIG. 12 is a flowchart of a process performed when the
information device starts.

FIG. 13 is a diagram showing an example of the transfer
management table data.

FIG. 14 is a detailed flowchart of a software interrupt
process (S203 in FIG. 5).

FIG. 15 is a diagram showing an example of the transfer
management table data.

FIG. 16 is a diagram showing an example of the transfer
management table data.

FIG. 17 is a diagram for explaining a page boundary
instruction.

FIG. 18 is a block diagram showing a functional configu-
ration of an information device according to Embodiment 3
of the present disclosure.

FIG. 19 is a diagram showing an example of the transfer
management table data.

FIG. 20 is a diagram showing an example of the boundary
instruction address data.

FIG. 21 is a flowchart of a process performed when the
information device starts.

FIG. 22 is a detailed flowchart of the software interrupt
process (S203 in FIG. 5).

FIG. 23 is a diagram for explaining a process performed
when the software interrupt instruction is executed.

FIG. 24 is a diagram for explaining a process performed
when the software interrupt instruction is executed.

FIG. 25 is a detailed flowchart of the instruction transfer
process (S306 in FIG. 22).

FIG. 26 is a diagram showing an example of the transfer
management table data.

FIG. 27 is a diagram showing an example of the transfer
management table data.

FIG. 28 is a diagram showing an example of the transfer
management table data.

FIG. 29 is a flowchart showing a process performed when
the instruction execution unit is in an idle state.

FIG. 30 is a diagram showing an example of instructions
stored in the instruction area.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 31 is a diagram showing an example of the transfer
management table data.

FIG. 32 is a diagram showing an example of instructions
stored in the instruction area.

FIG. 33 is a diagram showing an example of the transfer
management table data.

FIG. 34 is a diagram showing an example of an instruc-
tion stored in the instruction area.

FIG. 35 is a diagram showing an example of the transfer
management table data.

FIG. 36 is a block diagram showing a functional configu-
ration of an information device according to Embodiment 5
of the present disclosure.

FIG. 37 is a diagram showing an example of the transfer
management table data.

FIG. 38 is a diagram showing an example of a transfer
sequence of the instructions.

FIG. 39 is a diagram showing an example of the transfer
sequence data.

FIG. 40 is a flowchart of a process performed when the
information device starts.

FIG. 41 is a diagram showing an example of the transfer
management table data.

FIG. 42 is a detailed flowchart of the software interrupt
process (S203 in FIG. 5).

FIG. 43 is a flowchart showing a process performed when
the instruction execution unit is in an idle state at the second
or subsequent time of start.

FIG. 44 is a diagram showing an example of the instruc-
tions stored in the instruction area.

FIG. 45 is a flowchart of a process performed when the
information device according to Modification of Embodi-
ment 5 starts.

FIG. 46 is a block diagram showing a functional configu-
ration of an information device according to Embodiment 6
of the present disclosure.

FIG. 47 is a diagram showing an example of the transfer
management table data.

FIG. 48 is a diagram showing an example of the case
where an interrupt is prohibited when instructions are trans-
ferred.

FIG. 49 is a diagram showing an example of the data in
which an interrupt is prohibited.

FIG. 50 is a flowchart of a process performed when the
information device starts.

FIG. 51 is a diagram showing an example of the transfer
management table data.

FIG. 52 is a diagram showing an example of the instruc-
tions stored in the instruction area after all the instructions
are transferred to the interrupt prohibition page.

FIG. 53 is a detailed flowchart of a software interrupt
process (S203 in FIG. 5).

DESCRIPTION OF EMBODIMENTS

The following will describe an information device accord-
ing to embodiments of the present disclosure. It is to be
noted that the embodiments to be described later are favor-
able specific examples in the present disclosure. The numeri-
cal values, structural elements, arrangement and connection
of' the structural elements, steps, and the processing order of
the steps are mere examples, and they are not intended to
limit the present disclosure. The present disclosure is limited
only by the scope of the appended Claims. Therefore, among
the structural elements in the following embodiments, struc-
tural elements not recited in any one of the independent

US 9,442,724 B2

9

claims are not necessarily needed to achieve the goal of the
present disclosure, but are described as those comprising a
more favorable embodiment.

Embodiment 1

FIG. 1 is a block diagram showing a functional configu-
ration of an information device according to Embodiment 1
of the present disclosure.

An information device 10 is an apparatus which executes
a program, and the information device 10 includes a CPU
100, a volatile memory 200, and a non-volatile memory 300.
The CPU 100, the volatile memory 200, and the non-volatile
memory 300 are connected to each other via a bus 400.

The CPU 100 is a processing unit which executes the
program, and plays a role as a start control apparatus which
controls the start of the information device 10. The volatile
memory 200 is a volatile memory which stores the program
executed by the CPU 100. The volatile memory 200 includes
a dynamic random access memory (DRAM). The non-
volatile memory 300 is a non-volatile memory which stores
a program transferred to the volatile memory 200 and
executed by the CPU 100. The non-volatile memory 300
includes a NAND flash memory or a NOR flash memory.
The volatile memory 200 is accessible faster than the
non-volatile memory 300.

The volatile memory 200 includes an instruction area 202
and a data area 203. The instruction area 202 stores the
instructions executed by an instruction execution unit 102 of
the CPU 100, and the data area 203 stores the data to be
accessed by the program executed by the instruction execu-
tion unit 102 of the CPU 100.

The non-volatile memory 300 includes an instruction area
302 and a data area 303. The instruction area 302 stores
instructions transferred to the instruction area 202 in the
program executed by the instruction execution unit 102 of
the CPU 100, and the data area 303 stores the data trans-
ferred to the data area 203 in the program executed by the
instruction execution unit 102 of the CPU 100.

The CPU 100 functionally includes a code write unit 101,
an instruction execution unit 102, an instruction transfer unit
103, an interrupt process program transfer unit 104, and a
data transfer unit 105. In other words, the program execution
by the CPU 100 allows each of the processes to play the
roles as the code write unit 101, the instruction execution
unit 102, the instruction transfer unit 103, the interrupt
process program transfer unit 104, and the data transfer unit
105.

The code write unit 101 writes an interrupt generation
code that is a code for generating a software interrupt, into
the page into which the instructions are not written, among
the pages included in the instruction area 202 which is an
area of the volatile memory 200 into which the instructions
stored in the non-volatile memory 300 are written.

The instruction execution unit 102 executes the instruc-
tions stored in the instruction area 202, and generates a
software interrupt when the interrupt generation code is
executed.

The instruction transfer unit 103 transfers the page to be
stored in the corresponding page that is the page in which the
interrupt generation code generating the software interrupt is
stored, from the non-volatile memory 300 to the correspond-
ing page of the volatile memory, when the software interrupt
is generated by the interrupt generation code.

The interrupt process program transfer unit 104 writes the
program executed by the instruction transfer unit 103 into

15

25

30

40

45

55

65

10

the volatile memory 200, before the process is executed by
the instruction transfer unit 103.

The data transfer unit 105 transfers constant data stored in
the non-volatile memory 300 to the volatile memory 200
before the instruction is executed by the instruction execu-
tion unit 102.

The following will describe the process performed at the
start by the information device 10 with reference to specific
examples.

FIG. 2 is a flowchart of a process performed when the
information device 10 starts.

When a power source is pumped into the information
device 10, the interrupt process program transfer unit 104
writes the program of the process executed by the instruction
transfer unit 103 into the volatile memory 200 before the
start of the process by the instruction transfer unit 103
(S101). The process performed by the instruction transfer
unit 103 will be described in details later. The program of the
process executed by the instruction transfer unit 103 is
stored in the non-volatile memory 300, and the interrupt
process program transfer unit 104 may transfer the program
from the non-volatile memory 300 to the volatile memory
200. Moreover, the program of the process executed by the
instruction transfer unit 103 is stored in a ROM or a flash
memory in the information device 10, and the interrupt
process program transfer unit 104 may transfer the program
from the ROM to the volatile memory 200.

Next, the data transfer unit 105 transfers the constant data
stored in the non-volatile memory 300 to the volatile
memory 200 before the instruction is executed by the
instruction execution unit 102 (S102). As shown in FIG. 3,
the instruction area 302 of the non-volatile memory 300
stores the instructions to be transferred to the instruction
area 202 in the program executed by the instruction execu-
tion unit 102 of the CPU 100. The data area 303 stores the
data to be transferred to the data area 203 in the program
executed by the instruction execution unit 102 of the CPU
100. The data transfer unit 105 reads, among them, the data
stored in the data area 303, and then writes the read data into
the data area 203 of the volatile memory 200. The data
written into the data area 203 includes constant data such as
data on initial value of variables. At this time, no instruction
is written into the instruction area 202.

By referring to FIG. 2 again, the code write unit 101
writes interrupt generation codes into the page into which
the instructions are not written among the pages included in
the instruction area 202 that is an area of the volatile
memory 200 into which the instructions stored in the non-
volatile memory 300 are written (S103). In the following
description, the interrupt generation code is determined as
the software interrupt instruction included in an instruction
set implemented in the instruction execution unit 102 (the
CPU 100).

As shown in FIG. 3, it is assumed that no instruction is
written into the instruction area 202. In this case, as shown
in FIG. 4, the code write unit 101 writes the software
interrupt instruction into all the pages (for example, pages A
to F) of the instruction area 202. In the following descrip-
tion, it is determined that the software interrupt instruction
is indicated with “pi” and the software interrupt instruction
pi is typically the instruction of the minimum instruction
length that can be expressed in the instruction set. Herein-
after, the software interrupt instruction pi will be described
as a one byte instruction indicated by a machine code “ff”.
The code write unit 101 writes the software interrupt instruc-
tion pi into all bytes on pages A to F. It is to be noted that
when no other programs or data are stored in advance in part

US 9,442,724 B2

11

of the instruction area 202, the software interrupt instruction
pi is not written into the part. Moreover, in the instruction
stored in the instruction area 302 of the non-volatile memory
300, the software interrupt instruction pi does not appear.

By referring to FIG. 2 again, the instruction execution unit
102 executes the instructions stored in the instruction area
202, and generates a software interrupt when the interrupt
generation instruction pi is executed (S104). Details of the
program execution process (S104) will be described later.

FIG. 5 is a detailed flowchart of the program execution
process (S104 in FIG. 2).

The instruction execution unit 102 decodes the instruction
stored in the address of the volatile memory 200 indicated by
a program counter (S201).

When the decoded instruction is the software interrupt
instruction pi (YES in S202), the instruction execution unit
102 generates a software interrupt and responds to the
software interrupt, while the instruction transfer unit 103
performs the software interrupt process (S203).

FIG. 6 is a detailed flowchart of the software interrupt
process (S203 in FIG. 5).

The instruction transfer unit 103, when the software
interrupt is generated by the software interrupt instruction
pi, transters the instructions to be stored in the correspond-
ing page that is a page in which the software interrupt
instructions pi generating the software interrupts are stored,
from the non-volatile memory 300 to the corresponding
page of the volatile memory (S301).

For example, as shown in FIG. 7, it is assumed that the
instructions have already been transferred to page A of the
instruction area 202 and the software interrupt instructions
pi are written into the other pages (pages B to F). In this
state, a program counter jumped from page A to page D with
jmp instruction located at the end of page A. Then, as shown
in FIG. 8, since the software interrupt instruction pi on page
D is decoded, the instruction execution unit 102 generates a
software interrupt. In response to the software interrupt, the
instruction transfer unit 103 transfers the instructions to page
D, with the result that the instructions are transferred to page
D as shown in FIG. 9.

In the present embodiment, a value of the program
counter is written into a stack when the software interrupt is
generated and the value written on the stack is written back
from the stack to the program counter after the software
interrupt process is completed. However, when a register is
prepared for evacuating the program counter, the saving and
restoration may be performed using the register. By referring
to FIG. 5 again, after the software interrupt process (S203),
the instruction decoding process (S201) and the following
processes are repeated until the program ends. In other
words, since the program counter stores the address in which
the software interrupt instruction pi performing the software
interrupt has been stored, the process resumes from the
decoding of the instructions stored in the address.

When the decoded instruction is a normal instruction (NO
in S202), the instruction execution unit 102 execute the
decoded instruction (S204). After the instruction execution,
the value of the program counter is rewritten into the address
of the next instruction. Subsequently, the instruction code
process (S201) and the following processes are repeated
until the program ends.

As described above, in the information device 10 accord-
ing to Embodiment 1, the code write unit 101 writes the
interrupt generation code (software interrupt instruction pi)
into a page in which no interrupt is written among pages
included in the instruction area 202. Therefore, when the
instruction other than the software interrupt instruction pi is

10

15

20

25

30

35

40

45

55

60

65

12

stored in the instruction area 202, the instruction is executed.
However, when the software interrupt instruction pi is stored
in the instruction area 202, the software interrupt is gener-
ated by the execution of the above described software
interrupt instruction pi. In the software interrupt process, the
instruction is transferred to the corresponding page. There-
fore, after the interrupt process, the instruction can be
executed normally. As described above, the instruction
execution and the instruction transfer can be performed
simultaneously in parallel. Therefore, the program does not
have to be segmented according to a program type, and it is
possible to quicken the system start from when the system
makes the first start.

It is to be noted that the code write unit 101, the instruc-
tion transfer unit 103, the interrupt process program transfer
unit 104, the data transfer unit 105 do not necessarily have
to be implemented as hardware in the CPU, and they may be
implemented as software which performs the same func-
tions.

Embodiment 2

The following will describe an information device accord-
ing to Embodiment 2 of the present disclosure.

In Embodiment 1, in the instructions stored in the instruc-
tion area 302 of the non-volatile memory 300, the software
interrupt instruction pi does not appear. Meanwhile, in
Embodiment 2, in the instructions stored in the instruction
area 302 of the non-volatile memory 300, the software
interrupt instruction pi may appear. The case is assumed
where a software interrupt instruction pi is embedded in the
program for a purpose different from that for generating an
interrupt such as the purpose for designating a breakpoint in
debugging. In other words, the difference from Embodiment
1 is that by using the transfer management table to be
described later, it is determined whether or not the software
interrupt instruction pi that is the execution target is written
into the code write unit 101 for generating an interrupt.

FIG. 10 is a block diagram showing a functional configu-
ration of an information device according to Embodiment 2
of the present disclosure. In the following description, the
same reference numerals are assigned to the same structural
elements as those in Embodiment 1. Since the functions and
names are the same as those in Embodiment 1, a description
thereof will be omitted where appropriate.

An information device 20 is an apparatus which executes
a program, and the information device 11 includes a CPU
110, a volatile memory 210, and a non-volatile memory 300.
The CPU 110, the volatile memory 210, and the non-volatile
memory 300 are connected to each other via the bus 400.

The CPU 110 is a processing unit which executes the
program, and plays a role as a start control apparatus which
controls the start of the information device 20. The volatile
memory 210 is a volatile memory which stores the program
executed by the CPU 110. The volatile memory 210 includes
a dynamic random access memory (DRAM). The volatile
memory 210 is accessible faster than the non-volatile
memory 300.

The volatile memory 210 includes the instruction area 202
and the data area 203. The volatile memory 210 also stores
transfer management table data 204. The transfer manage-
ment table data 204 is data showing pages which are
included in the instruction area 202 and in which the
instructions have already been transferred from the non-
volatile memory 300 to the volatile memory 200. FIG. 11 is
a diagram showing an example of the transfer management
table data 204. The transfer management table data 204

US 9,442,724 B2

13

stores a transfer management flag on a page-by-page basis.
A page having the transfer management flag 1 indicates that
the instructions have already been transferred from the
non-volatile memory 300 to the volatile memory 200. A
page having the transfer management flag 0 indicates that
the instructions are not transferred from the non-volatile
memory 300 to the volatile memory 200. In the example of
FIG. 11, pages A, B, E, and F indicates that the instructions
have already been transferred from the non-volatile memory
300 to the volatile memory 200, and pages C and D indicate
that the instructions are not transferred from the non-volatile
memory 300 to the volatile memory 200. The transfer
management table data 204 is not limited to the example of
FIG. 10. For example, the transfer management table data
204 may include the page names in which the instructions
have been already transferred and may include only the page
names in which the instructions are not transferred.

The CPU 110 includes the code write unit 101, the
instruction execution unit 102, an instruction transfer unit
113, an interrupt process program transter unit 104, and a
data transfer unit 105. When it is able to be determined that
the instruction is not transferred to the corresponding page
that is a page storing the interrupt generation code that is a
code generating the software interrupt by referring to the
transfer management table data 204 when a software inter-
rupt is generated by the software interrupt instruction pi, the
instruction transfer unit 113 transfers the instruction to be
stored in the corresponding page from the non-volatile
memory 300 to the volatile memory 200 and then updates
the transfer management table data 204.

The following will describe the process performed at the
start by the information device 20 with reference to specific
examples. In the following description, the numbers similar
to those in Embodiment 1 are assigned to the steps similar
to those in Embodiment 1. A description will be omitted
thereof where appropriate.

FIG. 12 is a flowchart of a process performed when the
information device 20 starts.

The flow of the processes is similar to that at the start of
the information device 10 shown in FIG. 2. However, until
the program execution process starts (S104), the instruction
execution unit 102 initializes the transfer management table
data 204 (S105). In other words, the instruction execution
unit 102 sets, to 0, a transfer management flag of the page
in which the instructions are not transferred in the transfer
management table data 204. For example, when the instruc-
tion area 202 includes pages A to F and the instructions are
not transferred to all the pages, the instruction execution unit
102 sets, to 0, the transfer management flags of pages A to
F, as shown in FIG. 13.

Details of the program execution process (S104) are
similar to those shown in FIG. 5. It is to be noted that the
difference from Embodiment 1 is the software interrupt
process (5203 in FIG. 5) executed in the program execution
process (S104).

FIG. 14 is a detailed flowchart of the software interrupt
process (S203 in FIG. 5).

By referring to the transfer management table data 204
when the software interrupt is generated by the software
interrupt instruction pi, the instruction transfer unit 113
determines whether or not the instruction is not transferred
to the corresponding page (S302).

When the instructions are not transferred to the corre-
sponding page (YES in S302), the instruction transfer unit
113 transfers the instruction to be stored in the correspond-
ing page from the non-volatile memory 300 to the corre-
sponding page of the volatile memory (S301). Subsequently,

10

15

20

25

30

35

40

45

50

55

60

65

14

the instruction transfer unit 113 updates the transfer man-
agement table data 204 (S303). In other words, the transfer
management flag of the corresponding page is changed from
0 to 1. For example, under a state of the instruction area 202
as shown in FIG. 7, the transfer management table data 204
is as shown in FIG. 15. Subsequently, when the software
interrupt is generated by the software interrupt instruction pi
of page D as shown in FIG. 9 and then the instructions are
transferred to page D, the transfer management table data
204 is as shown in FIG. 16. In other words, the transfer
management flag of page D is changed from 0 to 1.

When the instructions have already been transferred to the
corresponding page (NO in S302), the instruction transfer
unit 113 ends the interrupt process. The transfer of the
instruction to the corresponding page shows a situation in
which the software interrupt has been performed by the
software interrupt instruction pi embedded in the program
for designating a breakpoint in debugging. In this situation,
since the instructions have already been transferred and the
instruction does not have to be transferred, the instruction is
prevented from being transferred.

As described above, the information device 20 according
to Embodiment 2 is capable of determining whether or not
the instructions are transferred, by referring to the transfer
management table data 204. For example, there is a case
where a software interrupt instruction pi is embedded in the
program for a purpose different from that for generating an
interrupt such as the purpose for designating a breakpoint in
debugging. In this case, although it is not necessary to
transfer the instructions by executing the software interrupt
instruction pi in the breakpoint, the instructions have been
transferred when there is no means for determining whether
or not the instructions have been transferred. In this case, it
can be appropriately determined whether or not the instruc-
tion is to be transferred, by referring to the transfer man-
agement table data 204.

Moreover, the information device 20, as similarly to the
information device 10 according to Embodiment 1, is
capable of performing instruction execution and instruction
transfer simultaneously in parallel. Therefore, the program
does not have to be segmented according to a program type,
and it is possible to quicken the system from when the
system makes the first start.

It is to be noted that when the instruction for generating
a system call exception is used as an interrupt generation
mode instead of the software interrupt instruction pi, an
instruction for generating the system call exception appears
in the program. Also in this case, by using the transfer
management table, it is possible to be determined whether or
not the instruction for generating the system call exception
that is the execution target has been written into by the code
write unit 101 for generating the system call exception.

It is to be noted that when the software interrupt instruc-
tion pi is used only for generating the interrupt, the transfer
management table data 204 is unnecessary. Therefore, in
such a case, the information device 10 as shown in Embodi-
ment 1 may be used.

Embodiment 3

The following will describe an information device accord-
ing to Embodiment 3 of the present disclosure.

For example, as shown in (a) in FIG. 17, there is a case
where in the instruction area of the volatile memory, the
instruction is located across the page boundary between two
pages (for example, page A and page B). Hereinafter, the
instruction is referred to as the page boundary instruction. In

US 9,442,724 B2

15

the example of (a) in FIG. 17, the page boundary instruction
is “sub 100, d0”. At this time, as shown in (b) in FIG. 17,
when the instruction is transferred to only one of the pages
(for example, page A) and the instruction is not transferred
to the other page (for example, page B), some values of the
page boundary instruction are rewritten by the software
interrupt instruction pi. Therefore, the page boundary
instruction “sub Ox{fff, a3” different from the original page
boundary instruction is stored in the instruction area. This
means that if the page boundary instruction is executed, an
erroneous result is derived and a glitch occurs to the infor-
mation device. Therefore, in Embodiment 3, a mechanism is
included for preventing the execution of the page boundary
instruction different from the original page boundary
instruction. It is to be noted that the page boundary instruc-
tion is generated (i) in the case where the instruction is a
variable length instruction and (ii) in the case where even if
the instruction is a fixed length instruction, the head instruc-
tion is located in the non-aligned location and therefore the
instruction is located across the boundary between the two
pages. In other words, when the fixed length instruction is
aligned and located in the instruction area, the problem does
not occur. Therefore, in such a case, the information device
10 as described in Embodiment 1 or 2 may be used.

FIG. 18 is a block diagram showing a functional configu-
ration of an information device according to Embodiment 3
of the present disclosure. In the following description, the
same reference numerals are assigned to the same structural
elements as those in the above described embodiments.
Since the functions and names are the same as those in the
above described embodiments, a description thereof will be
omitted where appropriate.

An information device 30 is an apparatus which executes
a program, and the information device 30 includes a CPU
120, a volatile memory 220, and a non-volatile memory 310.
The CPU 120, the volatile memory 220, and the non-volatile
memory 310 are connected to each other via a bus 400.

The CPU 120 is a processing unit which executes the
program, and plays a role as a start control apparatus which
controls the start of the information device 30. The volatile
memory 220 is a volatile memory which stores the program
executed by the CPU 120. The volatile memory 220 includes
a dynamic random access memory (DRAM). The non-
volatile memory 310 is a non-volatile memory which stores
a program transferred to the volatile memory 220 and
executed by the CPU 120. The non-volatile memory 310
includes a NAND flash memory or a NOR flash memory.
The volatile memory 220 is accessible faster than the
non-volatile memory 310.

The volatile memory 220 includes the instruction area 202
and the data area 203. The volatile memory 220 also stores
a transfer management table data 205. The transfer manage-
ment table data 205 is a data showing (i) pages in which the
instructions have already been transferred from the non-
volatile memory 310 to the volatile memory 220 and which
are included in the instruction area 202 and (ii) the address
on the volatile memory 220 of the page boundary instruc-
tion. FIG. 19 is a diagram showing an example of the
transfer management table data 205. The transfer manage-
ment table data 205 stores, for each of the pages, a transfer
management flag, a boundary instruction presence or
absence flag, a boundary instruction address, and a head
code. The transfer management flag is similar to that in
Embodiment 2, and therefore a description thereof will be
omitted. The boundary instruction presence or absence flag
shows, with 1, that the boundary instruction exists across the
corresponding page and the next page, and with 0, that no

20

30

35

40

45

55

16

boundary instruction exists. The boundary instruction
address shows the start address of the page boundary
instruction. The head code shows the first byte of the page
boundary instruction. Although the page size according to
the present embodiment is described as 256 bytes, any page
size can be implemented according to the same method.

The non-volatile memory 310 includes the instruction
area 302 and the data area 303. The non-volatile memory
310 stores boundary instruction address data 304. The
boundary instruction address data 304 shows an address on
the volatile memory 220 of the page boundary instruction.
For example, as shown in FIG. 20, the boundary instruction
address data 304 stores, on a page-by-page basis, a boundary
instruction presence or absence flag and a boundary instruc-
tion address. The boundary instruction presence or absence
flag and the boundary instruction address are similar to those
described in FIG. 19. It is to be noted that in the present
embodiment, the interrupt generation code is not included in
the instruction stored in the instruction area 302. It is to be
noted that the boundary instruction address data 304 is
prepared in advance. For example, a compiler may prepare
the boundary instruction address data when the program is
compiled corresponding to the instruction stored in the
instruction area 302. It is to be noted that the boundary
instruction address data 304 may be dynamically generated
instead of transferring the boundary instruction address data
304 to the transfer management table data 205. In this case,
by decoding the instruction included in a range from (i) the
address of the page boundary before a predetermined num-
ber of bytes from the address of the page boundary to (ii) the
address of the page boundary, and it may be determined
whether or not the page boundary instruction is included. At
this time, the predetermined number of bytes may be a
maximum number of bytes per instruction.

The CPU 120 includes the code write unit 101, the
instruction execution unit 102, an instruction transfer unit
114, the interrupt process program transfer unit 104, and the
data transfer unit 105.

The instruction transfer unit 114 (i) transfers the instruc-
tions to be stored in the corresponding page from the
non-volatile memory 310 to the corresponding page of the
volatile memory 220 when the software interrupt is gener-
ated by the interrupt generation mode (software interrupt
instruction pi) in which the instructions are located on a
non-transferred page, and writes the software interrupt
instruction pi into the program boundary instruction located
between the corresponding page and the adjacent page when
the instruction is not transferred to the page located imme-
diately after the corresponding page, and (ii) transfers the
instructions to be stored immediately after the program
boundary instruction from the non-volatile memory 310 to
the page immediately after the program boundary instruction
of the volatile memory 220 when the software interrupt is
generated by the software interrupt instruction pi written
into the program boundary instruction.

The instruction transfer unit 114 includes a transfer unit
115, a first code write unit 116, and a second code write unit
117.

The transfer unit 115 (i) determines the corresponding
page as the page to be transferred when it is able to be
determined that the instructions are not transferred to the
corresponding page by referring to the transfer management
table data 205 when the software interrupt is generated by
the software interrupt instruction pi, and (ii) determines the
page located immediately after the corresponding page as
the page to be transferred when it is able to be determined
that the instructions have already been transferred to the

US 9,442,724 B2

17

corresponding page by referring to the transfer management
table data 205 when the software interrupt is generated by
the software interrupt instruction pi, and (iii) transfers the
instructions to be stored in the corresponding page deter-
mined as the page to be transferred or the page located
immediately after the corresponding page from the non-
volatile memory 310 to the page to be transferred of the
volatile memory 220, and then updates the transfer manage-
ment table data 205.

The first code write unit 116 writes the software interrupt
instruction pi into the address of the page boundary instruc-
tion of the page to be transferred when it is able to be
determined that the address of the page boundary instruction
is included in the address of the page to be transferred and
instructions are not transferred to the following page which
is a page located immediately after the page to be trans-
ferred, by referring to the transfer management table data
205 after the process by the transfer unit 115.

The second code write unit 117 writes the page boundary
instruction into the address of the page boundary instruction
on the previous page when it is able to be determined that the
address of the page boundary instruction is included in the
address of the previous page that is a page located imme-
diately before the page to be transferred and the instructions
have already been transferred to the previous page, by
referring to the transfer management table data 205 after the
process by the transfer unit 115.

It is to be noted that the data transfer unit 105 further
transfers the boundary instruction address data 304 stored in
the non-volatile memory 310 to the transfer management
table data 205 of the volatile memory 220.

The following will describe the process performed at the
start by the information device 30 with reference to specific
examples. In the following description, the numerals similar
to those in the above embodiments are assigned to the steps
similar to those in the above embodiments. A description
will be omitted thereof where appropriate.

FIG. 21 is a flowchart of a process performed when the
information device 30 starts.

The flow of the processes is similar to that at the start of
the information device 20 shown in FIG. 12. It is to be noted
that until the program execution process (S104) starts, the
data transfer unit 105 transfers the boundary instruction
address data 304 stored in the non-volatile memory 310 to
the transfer management table data 205 of the volatile
memory 220. For example, the transfer management table
data 205 shown in FIG. 19 can be obtained by transferring
the boundary instruction address data 304 shown in FIG. 20
to the transfer management table data 205.

Details of the program execution process (S104) are
similar to those shown in FIG. 5. It is to be noted that the
software interrupt process (S203 in FIG. 5) executed in the
program execution process (S104) is different from that in
Embodiment 1.

FIG. 22 is a detailed flowchart of the software interrupt
process (S203 in FIG. 5).

By referring to the transfer management table data 205
when the software interrupt is generated by the software
interrupt instruction pi, the transfer unit 115 determines
whether or not the instructions are not transferred to the
corresponding page (S302).

When the instructions are not transferred to the corre-
sponding page (YES in S302), the transfer unit 115 deter-
mines that the corresponding page is the page to be trans-
ferred (S304). For example, as shown in (a) in FIG. 23, when
the software interrupt is generated by the execution of a
software interrupt instruction 1801 on page C (software

10

15

20

25

30

35

40

45

50

55

60

65

18

interrupt instruction pi), page C that is the corresponding
page is determined as the page to which the instructions are
to be transferred.

When the instructions have already been transferred to the
corresponding page (NO in S302), it is determined that the
page located immediately after the corresponding page is the
page to be transferred (S305). For example, as shown in (a)
in FIG. 24, when the software interrupt is generated by the
execution of the software interrupt instruction pi located in
a start address 1803 of the page boundary instruction 1802
on page C and the instruction has already been transferred to
page C, as described later, the software interrupt instruction
pi located in the start address of page C is obtained by
rewriting the page boundary instruction into the software
interrupt instruction pi. Therefore, page D located immedi-
ately after page C is determined as the page to which the
instruction is to be transferred. The reason why the page to
be transferred in this way is determined will be described
later.

The transfer unit 115, the first code write unit 116, and the
second write unit 117 transfer the instructions to be stored in
the corresponding page determined as the page to be trans-
ferred or the page located immediately after the correspond-
ing page from the non-volatile memory 310 to the page to be
transferred of the volatile memory 220, and then update the
transfer management table data 205 (S306).

Details of the instruction transfer process (S306 in FIG.
22) will be described next. FIG. 25 is a detailed flowchart of
the instruction transfer process (S306 in FIG. 22).

The transfer unit 115 transfers the instructions to be stored
in the corresponding page determined as the page to be
transferred or the page located immediately after the corre-
sponding page (S401) from the non-volatile memory to the
page, of the volatile memory, to be transferred, and then
updates the transfer management table data 205 (S402). In
the case of the example showing in (a) in FIG. 23, since the
page to be transferred is page C, the instruction is transferred
to page C and the state is as shown in (b) in FIG. 23.
Subsequently, the transfer management flag on page C of the
transfer management table data 205 is written from O to 1,
and the state is like that shown in FIG. 26.

The first code write unit 116 determines whether or not the
address of the page boundary instruction is included in the
address of the page to be transferred, by referring to the
transfer management table data 205 (S403). In other words,
when the boundary instruction presence or absence flag is 1
in the transfer management table data 205, it is determined
that the address of the page boundary instruction is included
in the address of the page to be transferred. When the
boundary instruction presence or absence flag is 0 in the
transfer management table data 205, it is determined that the
address of the page boundary instruction is not included in
the address of the page to be transferred. When the address
of the page boundary instruction is included in the address
of the page to be transterred (YES in S403), the first code
write unit 116 determines whether or not the instruction is
not transferred to the following page that is the page located
immediately after the page to be transferred, by referring to
the transfer management table data 205 (S404). In other
words, it is determined that when the transfer management
flag on the following page is O in the transfer management
table data 205, the instructions are not transferred to the
following page, and it is determined that when the transfer
management flag on the following page is 1 in the transfer
management table data 205, the instruction has already been
transferred to the following page. In the example showing in
(b) in FIG. 23, the address of the page boundary instruction

US 9,442,724 B2

19

1802 is included in the address on page C that is the page to
be transferred, and the instructions are not transferred to
page D that is the following page. Since this situation shows
that the page boundary instruction 1802 is different from the
original code, a measure is taken such that the page bound-
ary instruction 1802 is not executed in the following process.

When the instructions are not transferred to the following
page (YES in S404), the first code write unit 116 saves, to
a buffer, the code of the start address of the page boundary
instruction included in the page to be transferred (S405).
Subsequently, the first code write unit 116 writes the soft-
ware interrupt instruction pi into the address of the page
boundary instruction on the page to be transferred (S406). In
the example shown in (b) in FIG. 23, a code “da” of the start
address 1803 of the page boundary instruction 1802 is saved
to the buffer, and the software interrupt instruction pi is
written into the start address 1803 as shown in (¢) in FIG. 23.
With this, even when the program counter shows the start
address 1803, it is possible to prevent the execution of the
page boundary execution different from the original instruc-
tion. It is to be noted that in the present embodiment, a
column of the head code in the transfer management table
data 205 is used as the buffer. With this, in the state shown
in (¢) in FIG. 23, the state of the transfer management table
data 205 is as shown in FIG. 27. In other words, the code
“da” of the start address 1803 is written into the column of
the head code on page C.

It is to be noted that when the address of the page
boundary instruction is not included in the address of the
page to be transferred (NO in S403), the processes from
S404 to S406 are not performed. Moreover, when the
address of the page boundary instruction is included in the
page to be transferred and the instructions have already been
transferred to the following page (YES in S403, No in
S404), the page boundary instruction is an original instruc-
tion and the execution of the page boundary instruction does
not cause a problem such as a glitch, with the result that the
processes of S405 and S406 are not performed.

Next, the second code write unit 117 determines whether
or not the address of the page boundary instruction is
included in the address of the previous page that is a page
located immediately before the page to be transferred, by
referring to the transfer management table data 205 (S407).
In other words, it is determined that when the boundary
instruction presence or absence flag of the previous page is
1 in the transfer management table data 205, the address of
the page boundary instruction is included in the address of
the previous page and it is determined that when the bound-
ary instruction presence or absence flag of the previous page
is 0, the address of the page boundary instruction is not
included in the address of the previous page. When the
address of the page boundary instruction is included in the
address of the previous page (YES in S407), the second code
write unit 117 determines whether or not the instructions
have already been transferred to the previous page, by
referring to the transfer management table data 205 (S408).
In other words, it is determined that when the transfer
management flag of the previous page is 1 in the transfer
management table data 205, the instructions have already
been transferred to the previous page and it is determined
that when the transfer management flag of the previous page
is 0 in the transfer management table data 205, the instruc-
tions are not transferred to the previous page. In the example
shown in (c) in FIG. 23, the address of the page boundary
instruction 1804 is included in the address of the page B that
is the previous page, and the instructions have already been
transferred to page B. In this situation, since the processes of

30

40

45

55

20

S405 and S406 were performed on the page boundary
instruction 1804 in the past, the software interrupt instruc-
tion pi is written into the start address of the page boundary
instruction 1804. Moreover, the instructions have already
been transferred to page B and page C. Therefore, by writing
back the software interrupt instruction pi of the page bound-
ary instruction 1804 to the original code, it is possible to
make the page boundary instruction 1804 executable.

When the instruction has already been transferred to the
previous page (YES in S408), the second code write unit 117
writes the page boundary instruction saved to the buffer into
the address of the page boundary instruction of the previous
page. In the example shown in (¢) in FIG. 23, since the
instructions have already been transferred to page B that is
the previous page, the head code “b0” of page B described
in the transfer management table data 205 shown in FIG. 27
is written into the start address 1805 of the page boundary
instruction 1804.

It is to be noted that when the address of the page
boundary instruction is not included in the address of the
previous page (NO in S407), the processes of S408 and S409
are not performed. Moreover, when the address of the page
boundary instruction is included in the address of the
previous page and the instructions are not transferred to the
previous page (YES in S407, YES in S408), there is no code
to be written into the start address of the page boundary
instruction in the previous page, with the result that the
process of S409 is not performed.

Next, a specific example of the case where the page
located immediately after the corresponding page is deter-
mined as the page to be transferred in S305 will be
described. For example, as shown in (a) in FIG. 24, it is
assumed that the software interrupt is generated by the
execution of the software interrupt instruction pi written into
the start address 1803 of the page boundary instruction 1802
of page C, and page D located immediately after page C is
determined as the page to be transferred (NO in S301 in FIG.
22, S305). At this time, as shown in (b) in FIG. 24, the
instructions are transferred to page D (S401 in FIG. 25).
Moreover, since the instructions are not transferred to page
E that is the following page of page D, a code “b0” of the
start address 1902 of the page boundary instruction 1901 of
page D is saved to the buffer (S405 in FIG. 25). At this time,
the state of the transfer management table data 205 is as
shown in FIG. 28. Subsequently, as shown in (¢) in FIG. 24,
the software interrupt instruction pi is written into the start
address 1902 of the page boundary instruction 1901 (S406
in FIG. 25). Moreover, since the address of the page bound-
ary instruction 1802 is included in the address of the
previous page of page D and the instruction has already been
transferred to page C (YES in S407 in FIG. 25, YES in
S408), as shown in (d) in FIG. 24, a head code “da” of page
C described in the transfer management table data 205
shown in FIG. 28 is written into the start address 1803 of the
page boundary instruction 1802 of page C. With this, the
original page boundary instruction 1802 is changed into an
executable state.

As described above, when the instructions have been
transferred to the page to be transferred and the instruction
is not transferred to the adjacent page, the information
device 30 according to Embodiment 3 stores the software
interrupt instruction pi in the address of the page boundary
instruction located across the boundary between the page to
be transferred and the adjacent page. With this, it is possible

US 9,442,724 B2

21

to prevent the execution of the page boundary instruction
different from the original page boundary instruction.

Embodiment 4

The following will describe an information device accord-
ing to Embodiment 4 of the present disclosure.

The information device 20 according to Embodiment 2,
by referring to the transfer management table data 204,
transfers the instruction from the non-volatile memory 300
to the page of the volatile memory 210 to which the
instructions are not transferred. However, the transfer of the
instruction is limited to when the interrupt is generated by
the execution of the software interrupt instruction pi. The
difference of Embodiment 4 from Embodiment 2 is that the
transfer of the instruction is performed not only when the
interrupt is generated by the software interrupt instruction pi
but also when the instruction execution unit 102 is in an idle
state. Here, the case of where the instruction execution unit
102 is in an idle state includes an input waiting state.

The functional configuration of the information device
according to Embodiment 4 is similar to the functional
configuration of the information device 20 according to
Embodiment 2 shown in FIG. 10. It is to be noted that the
process performed by the instruction transfer unit 113 is
different from the process performed by the instruction
transfer unit 113 according to Embodiment 2. In other
words, the instruction transfer unit 113 performs the transfer
of the instructions when the software interrupt is generated
by the software interrupt instruction pi as shown in Embodi-
ment 2, and also transfers the instruction to be stored in the
page to which the instructions are not transferred from the
non-volatile memory 300 to the page of the volatile memory
210 to which the instructions are not transferred, when the
instruction execution unit 102 is in an idle state.

The following will describe the process performed at the
start by the information device 20 with reference to specific
examples.

The information device 20 performs a similar process to
that shown in Embodiment 2. In addition, when the instruc-
tion execution unit 102 is in an idle state, the following
processes are performed.

FIG. 29 is a flowchart showing the processes performed
when the instruction execution unit 102 is in an idle state.

When the instruction execution unit 102 is in an idle state,
the instruction transfer unit 113 detects the page to which the
instructions are not transferred by referring to the transfer
management table data 204 (S501). In other words, the
instruction transfer unit 113 detects the page in which the
transfer management flag is O in the transfer management
table data 204. For example, as shown in FIG. 30, when the
instructions are not transferred to pages B, C, E, and F in the
instruction area 202, the state of the transfer management
table data 204 is as shown in FIG. 31. Therefore, the
instruction transfer unit 113 detects one of the pages in
which the transfer management flag is 0 in the transfer
management table data 204. A page may be detected in
descending order starting from the top, and a page may be
detected at random. For example, it is assumed that page B
has been detected.

When the page to which the instructions are not trans-
ferred is detected (YES in S502), the instruction transfer unit
113 transfers the instructions to be stored in the correspond-
ing page that is the page to which the instructions are not
transferred from the non-volatile memory 300 to the corre-
sponding page of the volatile memory 210 (S503), and then
updates the transfer management table data 204 (S504). For

10

15

20

25

30

35

40

45

50

55

60

65

22

example, the instruction is transferred to page B as shown in
FIG. 32, and the transfer management table data 204 is
updated as shown in FIG. 33. In other words, the transfer
management flag of page B is changed from 0 to 1.

When the page to which the instructions are not trans-
ferred is not detected (NO in S502), the instruction transfer
unit 113 ends the process.

The instruction transfer unit 113 repeats the processes of
S501 to S504 when the instruction execution unit 102 is in
an idle state. For example, after (i) page C is determined as
the corresponding page by referring to the transfer manage-
ment table data 204 in FIG. 33 and (ii) the instruction is
transferred to page C as shown in FIG. 34, the transfer
management table data 204 is updated as shown in FIG. 35.
In other words, the transfer management flag of page C is
changed from O to 1.

As described above, in the information device 20 accord-
ing to Embodiment 4, the total number of software interrupts
can be reduced by causing the instruction transfer unit 113
to transfer the instruction in advance when the instruction
execution unit 102 is in an idle state. Therefore, the system
start can be quickened.

It is to be noted that another interrupt is prohibited when
the interrupt process performed by the interrupt process
program transfer unit 104 is performed when the instruction
execution unit 102 is in an idle state. With this, it is possible
to prohibit the execution of the software interrupt instruction
pi of the corresponding page by the cancellation of being in
an idle state when the transfer of the instruction in an idle
state is performed.

Embodiment 5

The following will describe an information device accord-
ing to Embodiment 5 of the present disclosure.

When the instruction execution unit 102 is in an idle state,
the information device 20 according to Embodiment 4
transfers the instructions from the non-volatile memory 300
to the page of the volatile memory 210 to which the
instructions are not transferred. At this time, the page to be
transferred is detected in descending order starting from the
top or is detected in random. The difference of the present
embodiment from Embodiment 4 is that the page to be a
transfer target is detected according to a transfer sequence of
instructions on a page-by-page basis when the information
device makes the first start.

FIG. 36 is a block diagram showing a functional configu-
ration of an information device according to Embodiment 5
of the present disclosure. In the following description, the
same reference numerals are assigned to the same structural
elements as those in the above described embodiments.
Since the functions and names are the same as those in the
above described embodiments, a description thereof will be
omitted where appropriate.

An information device 40 is an apparatus which executes
a program, and the information device 40 includes a CPU
130, a volatile memory 230, and a non-volatile memory 320.
The CPU 130, the volatile memory 230, and the non-volatile
memory 320 are connected to each other via the bus 400.

The CPU 130 is a processing unit which executes the
program, and plays a role as a start control apparatus which
controls the start of the information device 40. The volatile
memory 230 is a volatile memory which stores the program
performed by the CPU 130. The volatile memory 230
includes a dynamic random access memory (DRAM). The
non-volatile memory 320 is a non-volatile memory which
stores a program transferred to the volatile memory 230 and

US 9,442,724 B2

23

executed by the CPU 130. The non-volatile memory 320
includes a NAND flash memory or a NOR flash memory.
The volatile memory 230 is accessible faster than the
non-volatile memory 320.

The volatile memory 230 includes the instruction area 202
and the data area 203. The volatile memory 230 stores
transfer management table data 206. The transfer manage-
ment table data 206 is data showing (i) pages in which the
instructions have already been transferred from the non-
volatile memory 320 to the volatile memory 230 and which
are included in the instruction area 202 and (ii) a transfer
sequence of instructions on a page-by-page basis from the
non-volatile memory 320 to the volatile memory 230. FIG.
37 is a diagram showing an example of the transfer man-
agement table data 206. The transfer management table data
206 stores, on a page-by-page basis, a transfer management
flag and a transfer sequence. The transfer management flag
is similar to that in Embodiment 2, and therefore a descrip-
tion thereof will be omitted. The transfer sequence shows a
transfer sequence of the instruction on a page-by-page basis
from the non-volatile memory 320 to the volatile memory
230 when the information device 40 makes the first start. For
example, as shown in FIG. 38, when the instructions have
been transferred in a sequence of pages A, D, E, B, C, and
F, the transfer sequence of the transfer management table
data 206 is as shown in FIG. 37.

The non-volatile memory 320 includes the instruction
area 302 and the data area 303. The non-volatile memory
320 stores transfer sequence data 305. The transfer sequence
data 305 shows a transfer sequence of the instructions on a
page-by-page basis from the non-volatile memory 320 to the
volatile memory 230 when the information device 40 makes
the first start. For example, as shown in FIG. 39, the transfer
sequence data 305 stores a transfer sequence for each of the
pages. The transfer sequence data 305 in FIG. 39 shows that
the instructions have been transferred in the sequence of
pages A, D, E, B, C, and F.

The CPU 130 includes the code write unit 101, the
instruction execution unit 102, an instruction transfer unit
118, the interrupt process program transfer unit 104, and the
data transfer unit 105.

The instruction transfer unit 118, by referring to the
transfer management table data 206, when the instruction
execution unit 102 is in an idle state, transfers the instruction
to be stored in a page to which the instructions are not
transferred from the non-volatile memory 320 to the page of
the volatile memory 230 to which the instructions are not
transferred according to the transfer sequence indicated by
the transfer management table data 206, and then updates the
transfer management table data 206.

It is to be noted that the data transfer unit 105 further
transfers transfer sequence data 305 stored in the non-
volatile memory 320 to the transfer management table data
206 of the volatile memory 230.

The following will describe the process performed at the
start by the information device 40 with reference to specific
examples. In the following description, the numerals similar
to those in the above embodiments are assigned to the steps
similar to those in the above embodiments. A description
thereof will be omitted where appropriate.

FIG. 40 is a flowchart of a process performed when the
information device 40 starts.

The flow of S101, S102, S105, and S103 is similar to the
flow of processes performed the information device 20 at the
time of the start shown in FIG. 12. After the software
interrupt instruction write process (S103), the data transfer
unit 105 determines whether or not the information device

25

30

40

45

50

60

24

40 makes the second or subsequent start (S107). When it is
determined that the second or subsequent start is made, the
transfer sequence data 305 is transferred to the transfer
management table data 206 (S108). In other words, the
transfer sequence data 305 stored in the non-volatile
memory 320 is transferred to the transfer management table
data 206 of the volatile memory 230. For example, by
transferring the transfer sequence data 305 shown in FIG. 39
to the transfer management table data 206, the transfer
management table data 206 shown in FIG. 41 can be
obtained. The determination on whether the second or
subsequent start is made may be performed by holding the
total number of starts in the non-volatile memory 320 and by
referring to the total number of starts by the data transfer unit
105. Moreover, by not storing the transfer sequence data 305
in the non-volatile memory 320 at the time of the first start,
it may be determined that the first start is identified when the
transfer sequence data 305 is not stored in the non-volatile
memory 320, and it may be determined that the second or
subsequent start is identified when the transfer sequence data
305 is stored in the non-volatile memory 320.

Subsequently, the program execution process is per-
formed (S104). Details of the program execution process
(S104) are similar to those shown in FIG. 5. It is to be noted
that the software interrupt process (S203 in FIG. 5) executed
in the program execution process (S104) is different from
that in Embodiment 1.

After the program execution process (S104), the data
transfer unit 105 determines whether or not the information
device 40 makes the first start (S109). When the first start is
made (YES in S109), the transfer sequence data included in
the transfer management table data 206 is written into the
non-volatile memory 320 (S110). In other words, in the
transfer management table data 206, the page and the
transfer sequence that exclude the transfer management flag
are written into the non-volatile memory 320 as the transfer
sequence data 305. With this, the instruction transfer
sequence of the first process on a page-by-page basis is
stored in the non-volatile memory 320. The determination
on the first start is performed similarly to S107.

FIG. 42 is a detailed flowchart of the software interrupt
process (S203 in FIG. 5).

By referring to the transfer management table data 206
when the software interrupt is generated by the software
interrupt instruction pi, the instruction transfer unit 118
determines whether or not the instructions are not trans-
ferred to the corresponding page (S302).

When the instructions are not transferred to the corre-
sponding page (YES in S302), the instruction transfer unit
118 transfers the instructions to be stored in the correspond-
ing page from the non-volatile memory 300 to the corre-
sponding page of the volatile memory 230 (S301). Subse-
quently, the instruction transfer unit 118 updates the transfer
management table data 206 (S307). In other words, the
transfer management flag of the corresponding page is
changed from 0 to 1. Moreover, when the information device
40 makes the first start, the transfer sequence of the corre-
sponding page is written. The written transfer sequence is
written into the non-volatile memory 320 as the transfer
sequence data 305 by the above described process of S110
in FIG. 40.

It is to be noted that in the case where the instruction
execution unit 102 is in an idle state when the second or
subsequent start is made, the following processes are per-
formed.

FIG. 43 is a flowchart showing a process performed by the
instruction transfer unit 118 in the case where the instruction

US 9,442,724 B2

25

execution unit 102 is in an idle state in the case where the
second or subsequent start is made.

The instruction transfer unit 118 detects, by referring to
the transfer management table data 206, the page in the first
transfer sequence among the pages to which the instructions
are not transferred (S505). For example, as shown in FIG.
44, it is assumed that the instructions are not transferred to
pages B, C, and F in the instruction area 202. At this time,
the transfer management table data 206 is as shown in FIG.
37. Therefore, the instruction transfer unit 118 detects the
smallest transfer sequence page among the pages having the
transfer management flag 0 in the transfer management table
data 206. In other words, in the example of FIG. 37, page B
is detected.

The instruction transfer unit 118 determines whether or
not the non-transferred page has been detected (S502).
When the non-transferred page is detected (YES in S502),
the instruction transfer unit 118 transfers the instruction to
be stored in the corresponding page that is the detected
non-transferred page from the instruction area 302 to the
corresponding page of the instruction area 202 (S503), and
then updates the transfer management flags in the transfer
management table data 206 (S504). For example, the trans-
fer management flag of page B that is determined as the
corresponding page is changed from 0 to 1.

When the page to which the instructions are not trans-
ferred is not detected (NO in S502), the instruction transfer
unit 118 ends the process.

The instruction transfer unit 118 repeats the processes of
S505, and S502 to S504 when the instruction execution unit
102 is in an idle state.

As described above, according to the information device
40 according to Embodiment 5, by transferring the instruc-
tions according to the transfer sequence from the non-
volatile memory 320 to the volatile memory 230, a transfer
of the instructions in advance can be performed effectively
in the program in which the instruction execution sequence
is determined to some extent. In other words, the total
number of software interrupts caused by the execution of
another interrupt generation code instead of the transferred
instructions in advance can be reduced, and the advanced
transferred instructions are executed at an early stage after
the transfer of the instructions, with the result that the system
start can be quickened.

Modification of Embodiment 5

It is to be noted that in Embodiment 5, the instructions are
transferred in advance when the instruction execution unit
102 is in an idle state. However, immediately after the start
of the information device 40, the instructions of the prede-
termined number of pages may be transferred before the
instruction execution unit 102 starts executing the instruc-
tions, and subsequently, the execution of the instructions
may be performed.

FIG. 45 is a flowchart of the processes performed when
the information device 40 according to Modification of
Embodiment 5 starts.

The basic flow of processes is similar to the processes
performed when the information device 40 starts as shown
in FIG. 40. However, a loop process (loop A) is added after
the process of S108 and before the process of S104.

In loop A, the instruction transfer unit 118 first detects, by
referring to the transfer management table data 206, the page
in the first transfer sequence among the pages to which the
instructions are not transferred (S111). Next, the instruction
transfer unit 118 determines whether or not the non-trans-

10

15

20

25

30

35

40

45

50

55

60

65

26

ferred page has been detected (S112). When the non-trans-
ferred page is detected (YES in S112), the instruction
transfer unit 118 transfers the instructions to be stored in the
corresponding page that is the detected non-transferred page
from the instruction area 302 to the corresponding page of
the instruction area 202 (S113), and then updates the transfer
management flags in the transfer management table data 206
(S114). The instruction transfer unit 118 repeats the pro-
cesses of S111 to S114 a predetermined number of times
(loop A). It is to be noted that the processes of S111 to S114
are similar to those performed by the instruction transfer unit
118 when the instruction execution unit 102 is in an idle state
when the second or subsequent start is made as shown in
FIG. 43.

Embodiment 6

The following will describe an information device accord-
ing to Embodiment 6 of the present disclosure.

The information device according to Embodiment 6
stores, on a page-by-page basis, the interrupt prohibition
state during the instruction transfer at the time of the first
start, and transfers the instructions included in the pages in
which the software interrupt is generated by the execution of
the software interrupt instruction pi while the interrupt is
being prohibited, to the volatile memory before the start of
the program execution process (S104). With this, it is
possible to prevent degradation of the interrupt responsive-
ness of the system caused by an increase in the interrupt
prohibition period by the software interrupt process when
the software interrupt is generated by the execution of the
software interrupt instruction pi.

FIG. 46 is a block diagram showing a functional configu-
ration of an information device according to Embodiment 6
of the present disclosure. In the following description, the
same reference numerals are assigned to the same structural
elements as those in the above described embodiments.
Since the functions and names are the same as those in the
above described embodiments, a description thereof will be
omitted where appropriate.

An information device 50 is an apparatus which executes
a program, and the information device 50 includes a CPU
140, a volatile memory 240, and a non-volatile memory 330.
The CPU 140, the volatile memory 240, and the non-volatile
memory 330 are connected to each other via the bus 400.

The CPU 140 is a processing unit which executes the
program, and plays a role as a start control apparatus which
controls the start of the information device 50. The volatile
memory 240 is a volatile memory which stores the program
performed by the CPU 140. The volatile memory 240
includes a dynamic random access memory (DRAM), for
example. The non-volatile memory 330 is a non-volatile
memory which stores a program transferred to the volatile
memory 240 and executed by the CPU 140. The non-volatile
memory 330 includes a NAND flash memory or a NOR flash
memory, for example. The volatile memory 240 is acces-
sible faster than the non-volatile memory 330.

The volatile memory 240 includes the instruction area 202
and the data area 203. The volatile memory 240 stores
transfer management table data 207. The transfer manage-
ment table data 207 is data showing (i) pages in which the
instruction has already been transferred from the non-vola-
tile memory 330 to the volatile memory 240 and which are
included in the instruction area 202 and (ii) an interrupt
prohibition state that is the state showing whether or not the
interrupt is prohibited when the instruction is transferred on
a page-by-page basis from the non-volatile memory 330 to

US 9,442,724 B2

27

the volatile memory 240. FIG. 47 is a diagram showing an
example of the transfer management table data 207. The
transfer management table data 207 stores, on a page-by-
page basis, a transfer management flag and an interrupt
prohibition state. The transfer management flag is similar to
that in Embodiment 2, and therefore a description thereof
will be omitted. The interrupt prohibition state is 1 when the
interrupt is prohibited at the time of the instruction transfer
at the time of the first start, and the interrupt prohibition state
is 0 when the interrupt is not prohibited. For example, as
shown in FIG. 48, in the case where (i) the interrupt
prohibition flag when the instructions are transferred to
pages A to F is expressed as PSW.IM and (ii) the interrupt
is prohibited when the value of PSW.IM is other than 7, the
interrupt prohibition state of the transfer management table
data 207 is as shown in FIG. 47. It is to be noted that
PSW.IM is an interrupt prohibition level. For example, when
the value of PSW.IM is 2, the interrupts having the interrupt
prohibition levels of 0 and 1 are possible but the interrupts
having the other interrupt prohibition levels are prohibited.
It is to be noted that the value of PSW.IM may be directly
used as the interrupt prohibition state.

The non-volatile memory 330 includes the instruction
area 302 and the data area 303. The non-volatile memory
330 stores interrupt prohibition state data 306. The interrupt
prohibition state data 306 is data showing, for each of the
pages, the interrupt prohibition state when the instruction is
transferred from the non-volatile memory 330 to the volatile
memory 240. FIG. 49 is a diagram showing an example of
the interrupt prohibition state data 306. The interrupt pro-
hibition state data 306 stores, on a page-by-page basis, the
interrupt prohibition state. For example, pages B and C each
show that the interrupt is prohibited while the instructions
are transferred at the time of the first start.

The CPU 140 includes the code write unit 101, the
instruction execution unit 102, an instruction transfer unit
119, the interrupt process program transfer unit 104, and the
data transfer unit 105.

The instruction transfer unit 119 transfers, by referring to
the transfer management table data 207, regarding the inter-
rupt prohibition page in which the interrupt is prohibited
when the instruction is transferred, the instructions to be
stored in the interrupt prohibition page from the non-volatile
memory 330 to the interrupt prohibition page of the volatile
memory 240 before the instructions to be stored in the
corresponding interrupt prohibition page are executed, and
then updates the transfer management table data 207.

It is to be noted that the data transfer unit 105 further
transfers the interrupt prohibition state data 306 stored in the
non-volatile memory 330 to the transfer management table
data 207 of the volatile memory 240.

The following will describe the process performed at the
start by the information device 50 with reference to specific
examples. In the following description, the numerals similar
to those in the above embodiments are assigned to the steps
similar to those in the above embodiments. A description
will be omitted thereof where appropriate.

FIG. 50 is a flowchart of the processes performed when
the information device 50 starts.

The flow of the processes of S101, S102, S105, and S103
is similar to the flow of processes performed by the infor-
mation device 20 at the start shown in FIG. 12. After the
software interrupt instruction write process (S103), the data
transfer unit 105 determines whether or not the information
device 50 makes the second or subsequent start (S107).
When it is determined that the second or subsequent start is
made, the interrupt prohibition state data 306 is transferred

30

40

45

28

to the transfer management table data 207 (S115). In other
words, the interrupt prohibition state data 306 stored in the
non-volatile memory 330 is transferred to the transfer man-
agement table data 207 of the volatile memory 240. For
example, by transferring the interrupt prohibition state data
306 shown in FIG. 49 to the transfer management table data
207, the transfer management table data 207 shown in FIG.
51 can be obtained. The determination on the second or
subsequent start may be performed by holding the total
number of starts in the non-volatile memory 330 and by
referring to the total number of starts by the data transfer unit
105. Moreover, the interrupt prohibition state data 306 is not
stored in the non-volatile memory 330 at the time of the first
start. When the interrupt prohibition state data 306 is not
stored in the non-volatile memory 330, it may be determined
that the first start is made. When the interrupt prohibition
state data 306 is stored in the non-volatile memory 330, it
may be determined that the second or subsequent start is
made.

Subsequently, by referring to the transfer management
table data 207, the instruction transfer unit 119 determines
whether or not the instruction prohibition page to which the
instructions are not transferred exists (S116). In other words,
the instruction transfer unit 119 determines that the instruc-
tion prohibition page to which the instructions are not
transferred exists when the transfer management flag is 0
and the page of the interrupt prohibition flag is 1. When the
value of PSW.IM is directly used as the interrupt prohibition
state, the transfer process may be performed only in the case
where the value is less than or equal to a constant value. For
example, it is determined as the interrupt prohibition page
only when the value of PSW.IM left as the interrupt prohi-
bition state is less than or equal to 4 (the interrupt prohibition
level is 0 to 4). When the interrupt prohibition page to which
the instructions are not transferred exists (YES in S116), the
instruction transfer unit 119 transfers the instructions to be
stored in the interrupt prohibition page to which the instruc-
tions are not transferred from the instruction area 302 of the
non-volatile memory 330 to the instruction prohibition page
of the instruction area 202 of the volatile memory 240
(S117), and then updates the transfer management table data
207 (S118). In other words, the transfer management flag of
the interrupt prohibition page in the transfer management
table data 207 is changed from O to 1. The instruction
transfer unit 119 repeats the processes of S117 and S118
until no more non-transferred interrupt prohibition page
exists. FIG. 52 shows the state of the instruction area 202
after all the instructions have been transferred to the inter-
rupt prohibition pages, and the transfer management table
data 207 at this time is as shown in FIG. 47.

Subsequently, the program execution process is per-
formed (S104). Details of the program execution process
(S104) are similar to those shown in FIG. 5. It is to be noted
that the software interrupt process (S203 in FIG. 5) executed
in the program execution process (S104) is different from
that in Embodiment 1.

After the program execution process (S104), the data
transfer unit 105 determines whether or not the information
device 50 made the first start (S109). When the first start is
made (YES in S109), the interrupt prohibition state data
included in the transfer management table data 207 is
written into the non-volatile memory 330 (S119). In other
words, in the transfer management table data 207, the page
and the interrupt prohibition state that exclude the transfer
management flag are written into the non-volatile memory
330 as the interrupt prohibition state data 306. With this, the
interrupt prohibition state of the instruction at the time of the

US 9,442,724 B2

29

first start is stored in the non-volatile memory 330. The
determination on the first start is performed similarly to
S107.

FIG. 53 is a detailed flowchart of the software interrupt
process (S203 in FIG. 5).

By referring to the transfer management table data 207
when the software interrupt is generated by the software
interrupt instruction pi, the instruction transfer unit 119
determines whether or not the instructions are not trans-
ferred to the corresponding page (S302).

When the instructions are not transferred to the corre-
sponding page (YES in S302), the instruction transfer unit
119 transfers the instructions to be stored in the correspond-
ing page from the non-volatile memory 330 to the corre-
sponding page of the volatile memory 240 (S301). Subse-
quently, the instruction transfer unit 119 updates the transfer
management table data 207 (S308). In other words, the
transfer management flag of the corresponding page is
changed from O to 1. Moreover, in the case where the
information device 50 made the first start, the prohibition
state of the instruction execution unit 102 is written at the
time of the instruction transfer to the corresponding page.
The written interrupt prohibition state is written into the
non-volatile memory 330 as the interrupt prohibition state
data 306 by the above described process of S119 in FIG. 50.

As described above, the information device 50 according
to Embodiment 6 transfers the instructions to be stored in the
interrupt prohibition page, to the instruction area 202 of the
volatile memory 240, before the instructions are executed.
With this, it is possible to prevent degradation of the
interrupt responsiveness caused by an increase in the inter-
rupt prohibition period by the software interrupt process
when the software interrupt is generated by the execution of
the software interrupt instruction pi. Therefore, it is possible
to quicken the system start of the information device 50
without degrading the system interrupt responsiveness.

Although the information device according to the embodi-
ments of the present disclosure has been described, the
present disclosure is not defined only by the embodiments.

The present disclosure can be implemented as the infor-
mation device or the start control apparatus as shown in the
above described embodiments. The structural elements
essential for the start control apparatus are a code write unit,
an instruction transfer unit, and an instruction execution
unit. The structural elements essential for the information
device are a non-volatile memory, a volatile memory, a code
write unit, an instruction transfer unit, and an instruction
execution unit.

The above described information device may be an appa-
ratus which transfers the instructions stored in a non-volatile
memory to a volatile memory and then executes the instruc-
tions, such as a digital still camera, a digital television, a
mobile phone, a personal digital assistant (PDA), and the
like.

Moreover, although in the above described embodiments,
an example of the interrupt generation code has been
described using the software interrupt instruction, the inter-
rupt generation code is not limited to this. For example, the
interrupt generation code may be an undefined code which
causes exception handling and is not included in an instruc-
tion set implemented in the instruction execution unit.

It is to be noted that when the non-volatile memory is a
NAND flash memory, read and write cannot be performed in
a predetermined size unit such as 512 bytes or 2K bytes.
Therefore, the page size to be transferred or managed in the
present disclosure is preferably an integral multiple of the
size in which the NAND flash memory can read and write.

10

15

20

25

30

35

40

45

50

55

60

65

30

When the non-volatile memory is a NOR flash memory
which can read and write on a one byte-by-one byte basis,
the page size to be transferred or managed in the present
disclosure is any page size according to the system.

Moreover, although the interrupt process program transfer
unit according to the above described embodiments writes a
program of processes performed by the instruction execution
unit into the volatile memory, the instruction execution unit
may read the program from a ROM or a flash memory and
then execute the program. Moreover, the instruction transfer
unit may comprise dedicated hardware. In these cases, the
interrupt process program transfer unit may be included in
the information device.

Moreover, each of the above described embodiments and
the modification may be combined.

The disclosed embodiments are exemplary in all points
and are not limited. The scope of the present disclosure is not
defined by the above description but by the Claims, and the
Claims and their equivalents as well as all modifications
within the scope are intended to be included.

Although only some exemplary embodiments of the pres-
ent disclosure have been described in detail above, those
skilled in the art will readily appreciate that many modifi-
cations are possible in the exemplary embodiments without
materially departing from the novel teachings and advan-
tages of the present disclosure. Accordingly, all such modi-
fications are intended to be included within the scope of the
present disclosure.

INDUSTRIAL APPLICABILITY

The present disclosure can be applied to an information
device which transfers instructions from the non-volatile
memory to the volatile memory and then executes the
instructions stored in the volatile memory, or a start control
apparatus which controls the information device. The pres-
ent disclosure can be notably applied to a digital still camera,
a digital television, a mobile phone, a PDA, and the like.

The invention claimed is:

1. A start control apparatus for controlling a start of an
information device which includes a non-volatile memory
storing a plurality of instructions and a volatile memory that
is accessible faster than the non-volatile memory, the start
control apparatus comprising:

a CPU,

wherein the CPU is configured by execution of a control

program to function as:

a code write unit to write an interrupt generation code into

a page in which the instructions stored in the non-
volatile memory are not written, among a plurality of
pages included in an instruction area that is an area of
the volatile memory into which the instructions are
written, the interrupt generation code being a code for
generating a software interrupt;

an instruction transfer unit to transfer the instructions

from the non-volatile memory to a corresponding page
of the volatile memory that is a page in which the
interrupt generation code generating the software inter-
rupt is stored when the software interrupt is generated
by the interrupt generation code, the instructions being
to be stored in the corresponding page; and

an instruction execution unit to execute the instructions

stored in the instruction area, and when the interrupt
generation code is executed, generate a software inter-
rupt, wherein:

US 9,442,724 B2

31

in the transfer of the instructions, the instruction transfer
unit overwrites the interrupt generation code with the
instructions to be transferred, and

when an execution of the software interrupt completes,
the instruction execution unit resumes the execution of
the instructions from an address at a start of the
execution of the software interrupt.

2. The start control apparatus according to claim 1,

wherein:

the volatile memory further stores transfer management
table data showing a page which is included in the
instruction area and in which the instructions have
already been transferred from the non-volatile memory
to the volatile memory, and

the instruction transfer unit, when it is able to determine
that the instructions are not transferred to the corre-
sponding page by referring to the transfer management
table data when the software interrupt is generated,
transfers the instructions to be stored in the correspond-
ing page from the non-volatile memory to the corre-
sponding page of the volatile memory; and updates the
transfer management table data.

3. The start control apparatus according to claim 1,

wherein the instruction transfer unit (i) transfers, from the
non-volatile memory to the corresponding page of the
volatile memory, the instructions to be stored in the
corresponding page when a software interrupt is gen-
erated by the interrupt generation code located in a
page to which the instructions are not transferred, and
writes the interrupt generation code into an instruction
located across a boundary between the corresponding
page and a page located immediately after the corre-
sponding page, when the instructions are not trans-
ferred to the page located immediately after the corre-
sponding page, and (ii) transfers the instructions to be
stored in a page immediately after the instruction
located across the boundary, from the non-volatile
memory to the page of the volatile memory which is
immediately after the instruction located across the
boundary, when the software interrupt is generated by
the interrupt generation code written into the instruc-
tion located across the boundary.

4. The start control apparatus according to claim 3,

wherein:

the volatile memory further stores transfer management
table data showing (i) a page which is included in the
instruction area and in which the instructions have
already been transferred from the non-volatile memory
to the volatile memory, and (ii) an address, in the
volatile memory, of a page boundary instruction that is
an instruction located across a boundary between two
pages, and

the CPU is further configured by the execution of the
control program to function as, within the instruction
transfer unit:

a transfer unit to (i) determine the corresponding page as
a page to be transferred to when it is able to be
determined that the instructions are not transferred to
the corresponding page by referring to the transfer
management table data when the software interrupt is
generated, (ii) determine the page located immediately
after the corresponding page as a page to be transferred
to when it is able to determine that the instructions have
already been transferred to the corresponding page by
referring to the transfer management table data when
the software interrupt is generated, and (iii) transfer the
instructions to be stored in the corresponding page

10

15

20

25

30

35

40

45

32

determined as the page to be transferred to or the page
located immediately after the corresponding page, from
the non-volatile memory to the page to be transferred to
of the volatile memory, and update the transfer man-
agement table data;

a first code write unit to write an interrupt generation code

into an address of a page boundary instruction of the
page to be transferred to when it is able to determine
that the address of the page boundary instruction is
included in an address of the page to be transferred to
and the instructions are not transferred to a following
page, by referring to the transfer management table data
after a process by the transfer unit, the following page
being a page located immediately after the page to be
transferred to; and

second code write unit to write a page boundary
instruction into an address of the page boundary
instruction of a previous page when it is able to
determine that the address of the page boundary
instruction is included in an address of the previous
page and the instructions have already been transferred
to the previous page, by referring to the transfer man-
agement table data after the process by the transfer unit,
the previous page being a page located immediately
before the page to be transferred to.

5. The start control apparatus according to claim 1,
wherein when the instruction execution unit is in an idle

state, the instruction transfer unit transfers instructions
to be stored in a page to which the instructions are not
transferred, from the non-volatile memory to a page of
the volatile memory to which the instructions are not
transferred.

6. The start control apparatus according to claim 5,
wherein:
the volatile memory further stores transfer management

table data showing a page which is included in the
instruction area and in which the instructions have
already been transferred from the non-volatile memory
to the volatile memory, and

the instruction transfer unit detects a page to which the

instructions are not transferred, by referring to the
transfer management table data when the instruction
execution unit is in an idle state, transfers the instruc-
tions to be stored in the detected page from the non-
volatile memory to the detected page of the volatile
memory, and updates the transfer management table
data.

7. The start control apparatus according to claim 1,

50 wherein:

55

60

65

the volatile memory further stores transfer management

table data showing (i) a page which is included in the
instruction area and in which the instructions have
already been transferred from the non-volatile memory
to the volatile memory, and (ii) a transfer sequence of
instructions on a page-by-page basis from the non-
volatile memory to the volatile memory, and

the instruction transfer unit, by referring to the transfer

management table data, when the instruction execution
unit is in an idle state or before the instructions are
executed, (1) transfers the instructions to be stored in a
page to which the instructions are not transferred, from
the non-volatile memory to a page of the volatile
memory to which the instructions are not transferred,
according to a transfer sequence indicated by the trans-
fer management table data, and (ii) updates the transfer
management table data.

US 9,442,724 B2

33

8. The start control apparatus according to claim 1,

wherein:

the volatile memory further stores transfer management
table data showing (i) a page which is included in the
instruction area and in which the instructions have
already been transferred from the non-volatile memory
to the volatile memory, and (ii) an interrupt prohibition
state indicating, on a page-by-page basis, whether or
not an interrupt is prohibited when the instructions are

34

generation code, the instructions being to be stored in
the corresponding page; and

executing the instructions stored in the instruction area,
and when the interrupt generation code is executed,
generate a software interrupt, wherein:

in the transfer of the instructions, the interrupt generation
code is overwritten with the instructions to be trans-
ferred, and

when an execution of the software interrupt completes,

transferred from the non-volatile memory to the vola- 10 the execution of the instructions is resumed from an
tile memory, and address at a start of the execution of the software
the instruction transfer unit, by referring to the transfer interrupt.
management table data before instructions to be stored 15. The start control method according to claim 14,
in an interrupt prohibition page are executed, (i) trans- wherein:
fers the instructions to be stored in the interrupt pro- 15 the volatile memory further stores transfer management
hibition page from the non-volatile memory to the table data showing a page which is included in the
interrupt prohibition page of the volatile memory, and instruction area and in which the instructions have
(i1) updates the transfer management table data, the already been transferred from the non-volatile memory
interrupt prohibition page being a page in which an to the volatile memory, and
interrupt is prohibited when the instructions are trans- 20 when it is able to determine that the instructions are not
ferred to. transferred to the corresponding page by referring to
9. The start control apparatus according to claim 1, the transfer management table data when the software
wherein the CPU is further configured by the execution of interrupt is generated, the instructions to be stored in
the control program to function as: the corresponding page are transferred from the non-
an interrupt process program transfer unit to write a 25 volatile memory to the corresponding page of the
program of a process performed by the instruction volatile memory, and the transfer management table
transfer unit into the volatile memory, before the pro- data is updated.
cess is started by the instruction transfer unit. 16. The start control method according to claim 14,
10. The start control apparatus according to claim 1, in the transferring the instructions, (i) the instructions to
wherein the interrupt generation code is a software inter- 30 be stored in the corresponding page are transferred
rupt instruction included in an instruction set imple- from the non-volatile memory to the corresponding
mented in the instruction execution unit. page of the volatile memory, when a software interrupt
11. The start control apparatus according to claim 1, is generated by the interrupt generation code located in
wherein the interrupt generation code is an undefined a page to which the instructions are not transferred, and
code which causes exception handling and is not 35 the interrupt generation code is written into an instruc-
included in an instruction set implemented in the tion located across a boundary between the correspond-
instruction execution unit. ing page and a page located immediately after the
12. The start control apparatus according to claim 1, corresponding page, when the instructions are not
wherein the CPU is further configured by the execution of transferred to the page located immediately after the
the control program to function as: 40 corresponding page, and (ii) the instructions to be
a data transfer unit to transfer constant data stored in the stored in a page immediately after the instruction
non-volatile memory to the volatile memory, before the located across the boundary, are transferred from the
instructions are executed by the instruction execution non-volatile memory to the page of the volatile
unit. memory which is immediately after the instruction
13. An information device comprising: 45 located across the boundary, when the software inter-
the non-volatile memory storing the plurality of instruc- rupt is generated by the interrupt generation code
tions; written into the instruction located across the boundary.
the volatile memory accessible faster than the non-volatile 17. The start control method according to claim 16,
memory; and wherein:
the start control apparatus according to claim 1. 50 the volatile memory further stores transfer management
14. A start control method for controlling a start of an table data showing (i) a page which is included in the
information device which includes a non-volatile memory instruction area and in which the instructions have
storing a plurality of instructions and a volatile memory that already been transferred from the non-volatile memory
is accessible faster than the non-volatile memory, the state to the volatile memory, and (ii) an address, in the
control method comprising: 55 volatile memory, of a page boundary instruction that is
writing an interrupt generation code into a page in which an instruction located across a boundary between two
the instructions stored in the non-volatile memory are pages, and
not written, among a plurality of pages included in an the transferring the instructions further includes:
instruction area that is an area of the volatile memory (1) determining the corresponding page as a page to be
into which the instructions are written, the interrupt 60 transferred to when it is able to be determined that
generation code being a code for generating a software the instructions are not transferred to the correspond-
interrupt; ing page by referring to the transfer management
transferring the instructions from the non-volatile table data when the software interrupt is generated,
memory to a corresponding page of the volatile (i1) determining the page located immediately after
memory that is a page in which the interrupt generation 65 the corresponding page as a page to be transferred to

when it is able to determine that the instructions have
already been transferred to the corresponding page

code generating the software interrupt is stored when
the software interrupt is generated by the interrupt

US 9,442,724 B2

35

by referring to the transfer management table data
when the software interrupt is generated, and (iii)
transferring the instructions to be stored in the cor-
responding page determined as the page to be trans-
ferred to or the page located immediately after the
corresponding page, from the non-volatile memory
to the page to be transferred to of the volatile
memory, and updating the transfer management table
data;

writing an interrupt generation code into an address of
a page boundary instruction of the page to be trans-
ferred to when it is able to determine that the address
of the page boundary instruction is included in an
address of the page to be transferred to and the

36

are not being executed or before the instructions are
executed, (i) the instructions to be stored in a page to
which the instructions are not transferred, are trans-
ferred from the non-volatile memory to a page of the
volatile memory to which the instructions are not
transferred, according to a transfer sequence indicated
by the transfer management table data, and (ii) the
transfer management table data is updated.

19. The start control method according to claim 14,

10 Wherein:

the volatile memory further stores transfer management

table data showing (i) a page which is included in the
instruction area and in which the instructions have
already been transferred from the non-volatile memory
to the volatile memory, and (ii) an interrupt prohibition

instructions are not transferred to a following page, 15 Lo .
by referring to the transfer management table data state 1n.dlcat1ng,.0n a page-by-page ba.515, whgther or
after a process by the transferring the instructions, not an interrupt is prohibited When the instructions are
the following page being a page located immediately transferred from the non-volatile memory to the vola-
after the page to be transferred to; and . tile memory, .and . . .
writing a page boundary instruction into an address of 20 i the transferring the instructions, by re.ferrlng.to the
the page boundary instruction of a previous page transfer management table dgte} .before instructions to
when it is able to determine that the address of the b,e store.:d 1 an mterrupt prOhlbm.OH page are executeq,
page boundary instruction is included in an address (1.) .the instructions to be stored in the interrupt prohl-
of the previous page and the instructions have bition page are transferreq .f.rom the non-Volat%le
25 memory to the interrupt prohibition page of the volatile

already been transferred to the previous page, by
referring to the transfer management table data after
the process by the transferring the instructions, the
previous page being a page located immediately
before the page to be transferred to.

memory, and (ii) the transfer management table data is
updated, the interrupt prohibition page being a page in
which an interrupt is prohibited when the instructions
are transferred to.

20. The start control method according to claim 14,
further comprising:
writing a program of a process performed in the transfer-
ring the instructions into the volatile memory, before
the process is started.
21. The start control method according to claim 14,
further comprising:
transferring constant data stored in the non-volatile
memory to the volatile memory, before the instructions
are executed.

18. The start control method according to claim 14, 30
wherein:

the volatile memory further stores transfer management
table data showing (i) a page which is included in the
instruction area and in which the instructions have
already been transferred from the non-volatile memory 35
to the volatile memory, and (ii) a transfer sequence of
instructions on a page-by-page basis from the non-
volatile memory to the volatile memory, and

in the transferring the instructions, by referring to the
transfer management table data, when the instructions L

